Deflection bowls 3d in flexible paving

Main Article Content

Daniela Andrea Hernández Rojas
Carlos Hernando Higuera Sandoval

Abstract

When designing a flexible pavement construction model, it must meet the standards for allowable values and reserve percentages for stresses, strains, and deflections so that they can provide service during the design period. Deflection for being within the essential admissible criteria; It becomes an important study factor, so the objective of this article is the analysis of the effect and damage caused by traffic loads through load spectra, applying the elastic theory, determining and graphing the transversal and longitudinal deflection bowls in 2D and 3D. ; for a 3S1 configuration vehicle with maximum axle weights allowed by Colombian regulations and modeled in WinJULEA with a typical pavement structure to determine deflections in more than 600 points; analyzing the damage caused to the pavement where deflections greater than 1 mm were found as a result of the monotonic load of each axis and the interposition of deflection bulbs that create critical points where the pavement suffers damage similar to that found under the load plates.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hernández Rojas, D. A., & Higuera Sandoval, C. H. (2021). Deflection bowls 3d in flexible paving. Ingenio Magno, 11(2), 62-77. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2180
Section
Artículos-11-2
Author Biographies

Daniela Andrea Hernández Rojas

Ingeniería, Ingeniería de Transporte y Vías, Universidad Pedagógica y Tecnología de Colombia.

Carlos Hernando Higuera Sandoval

Ingeniería, Ingeniería de Transporte y Vías, Universidad Pedagógica y Tecnología de Colombia.

References

Bahrani, N., Blanc, J., Hornych, P., & Menant, F. (2019). Pavement instrumentation for condition assessment using eficiente sensing solutions. Ice publishing. 471-480 https://doi.org/10.1680/icsic.64669.471. (Bahrani, Hornych & Menant, 2019)

Bahrani, N., Blanc, J., Hornych, P., & Menant, F. (2020). Alternate Method of Pavement Assessment Using Geophones and Accelerometers for Measuring the Pavement Response. Infrastructures, 5(3), 25. https://doi. org/10.3390/infrastructures5030025.

Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). ViscoRoute 2.0 A Tool for the Simulation of Moving Load Effects on Asphalt Pavement. Road Materials and Pavement Design, 11(2), 227-250. https://doi.org/10.3166/rmpd.11.227-250. (Chabot, Chupin, Deloffre & Duhamel, 2010)

Chai, G., Manoharan, S., Golding, A., Kelly, G., & Chowdhury, S. (2016). Evaluation of the Traffic Speed Deflectometer Data Using Simplified Deflection Model. Transportation Research Procedia, 14, 3031-3039. https://doir.org/10.1016/jtrpro.2016.05.444. (Chai, Golding, Kelly & Chowdhry,2016)

Daniel, L. S., Kortiš, J., Decký, M., Pisca, P., & Fabo, P. (2018). Development of the FEM wheel-soil model for the design of flexible pavements. MATEC Web of Conferences, 196, 01012. https://doi.org/10.1051/matecconf/201819601012.

De Beer, M., Fisher, C., & Kannemeyer, L. (2004, septiembre). Tyre-pavement interface contact stresses on flexible pavements. Presentado en 8a Conference on asphalt pavements for southen africa, Sun City, South Africa: Documents Transformations Technologies cc. (Beer, Fisher & Kannemeyer, 2004).

Elbagalati, O., Elseifi, M. A., Gaspard, K., & Zhang, Z. (2017). Development of an artificial neural network model to predict subgrade resilient modulus from continuous deflection testing. Canadian Journal of Civil Engineering, 44(9), 700-706. https://doi. org/10.1139/cjce-2017-0132. (Elbagalati, Elseifi, Gaspard & Zhang, 2017)

Higuera, C. (Ed.). (2010). Principios básicos de estructuras de pavimentos. En Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras (1.a ed., Vol. 1, pp. 1-44). Tunja, Colombia: Uptc.

Higuera, C. (2006). Los cuencos de deflexión en estructuras de pavimentos flexibles. Revista facultad de ingeniería, UPTC. 15(20), 21- 31.

Huang, Y. (2003). Pavement Analysis and Design (2nd Revised ed.). New Jersey, United States of America: Pearson.

Ministerio de transporte. (2004). Resolución 4100 (pp. 2–8). Bogotá.

Mshali, M. R. S., & Steyn, W. J. (2019). Incorporating truck speed effect on evaluation and design of flexible pavement systems. International Journal of Pavement Research and Technology, 13(1), 55-63. https://doi.org/10.1007/s42947-019-0085-1.(Mshali & Steyn, 2019)

Nega, A., Nikraz, H., & Al-Qadi, I. L.(2016). Dynamic analysis of falling weight deflectometer. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 427-437. https://doi.org/10.1016/j. jtte.2016.09.010. (Nega, Nikraz, & Al-Qadi, 2016)

Prastyanto, C. A., & Mochtar, I. B. (2017). Prediction of Flexible Pavement Deflection Based on Falling Weight Deflectometer, FWD, for Highways Traversed by Heavy Overloaded Vehicles (Case Study on Arterial and Collector Roads in Tuban, East Java, Indonesia). IPTEK Journal of Proceedings Series, 3(6), 647-651. https://doi.org/10.12962/j23546026.y2017i6.3316.

Rashid, Z. A., & Ahmed, B. A. A. (2019). Data Processing, Storage, and Analysis: Applying Computational Procedures to the Case of a Falling Weight Deflectomer (FWD). Journal of Physics: Conference Series, 1362, 012145. https://doi.org/10.1088/1742-6596/1362/1/012145.

Tarefder, R. A., & Ahmed, M. U. (2014). Modeling of the FWD Deflection Basin to Evaluate Airport Pavements. International Journal of Geomechanics, 14(2), 205-213. https://doi.org/10.1061/(asce)gm.1943-5622.0000305.

Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design (2nd Revised ed.). New York, Unite States of America: Wiley.Brave, R. (2001, December 10). Governing the genome. Retrieved June 12, 2001.