Deflection bowls 3d in flexible paving
Main Article Content
Abstract
Downloads
Article Details
DECLARATION OF ORGINIALITY OF SUBMITTED ARTICLE
With this document, I/We certify that the article submitted for possible publication in the institutional journal INGENIO MAGNO of the Research Center Alberto Magno CIIAM of the University Santo Tomás, Tunja campus, is entirely of my(our) own writing, and is a product of my(our) direct intellectual contribution to knowledge.
All data and references to completed publications are duly identified with their respective bibliographical entries and in the citations thus highlighted. If any adjustment or correction is needed, I(we) will contact the journal authorities in advance.
Due to that stated above, I(we) declare that the entirety of the submitted material is in accordance with applicable laws regarding intellectual and industrial property, and therefore, I(we) hold myself(ourselves) responsible for any complaint related to it.
If the submitted article is published, I(we) declare that I(we) fully relinquish publishing rights of the article to the University Santo Tomás, Tunja campus. As remuneration for this relinquishment of rights, I(we) declare my(our) agreement to receive two (2) copies of the edition of the journal in which my(our) article appears.
References
Bahrani, N., Blanc, J., Hornych, P., & Menant, F. (2020). Alternate Method of Pavement Assessment Using Geophones and Accelerometers for Measuring the Pavement Response. Infrastructures, 5(3), 25. https://doi. org/10.3390/infrastructures5030025.
Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). ViscoRoute 2.0 A Tool for the Simulation of Moving Load Effects on Asphalt Pavement. Road Materials and Pavement Design, 11(2), 227-250. https://doi.org/10.3166/rmpd.11.227-250. (Chabot, Chupin, Deloffre & Duhamel, 2010)
Chai, G., Manoharan, S., Golding, A., Kelly, G., & Chowdhury, S. (2016). Evaluation of the Traffic Speed Deflectometer Data Using Simplified Deflection Model. Transportation Research Procedia, 14, 3031-3039. https://doir.org/10.1016/jtrpro.2016.05.444. (Chai, Golding, Kelly & Chowdhry,2016)
Daniel, L. S., Kortiš, J., Decký, M., Pisca, P., & Fabo, P. (2018). Development of the FEM wheel-soil model for the design of flexible pavements. MATEC Web of Conferences, 196, 01012. https://doi.org/10.1051/matecconf/201819601012.
De Beer, M., Fisher, C., & Kannemeyer, L. (2004, septiembre). Tyre-pavement interface contact stresses on flexible pavements. Presentado en 8a Conference on asphalt pavements for southen africa, Sun City, South Africa: Documents Transformations Technologies cc. (Beer, Fisher & Kannemeyer, 2004).
Elbagalati, O., Elseifi, M. A., Gaspard, K., & Zhang, Z. (2017). Development of an artificial neural network model to predict subgrade resilient modulus from continuous deflection testing. Canadian Journal of Civil Engineering, 44(9), 700-706. https://doi. org/10.1139/cjce-2017-0132. (Elbagalati, Elseifi, Gaspard & Zhang, 2017)
Higuera, C. (Ed.). (2010). Principios básicos de estructuras de pavimentos. En Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras (1.a ed., Vol. 1, pp. 1-44). Tunja, Colombia: Uptc.
Higuera, C. (2006). Los cuencos de deflexión en estructuras de pavimentos flexibles. Revista facultad de ingeniería, UPTC. 15(20), 21- 31.
Huang, Y. (2003). Pavement Analysis and Design (2nd Revised ed.). New Jersey, United States of America: Pearson.
Ministerio de transporte. (2004). Resolución 4100 (pp. 2–8). Bogotá.
Mshali, M. R. S., & Steyn, W. J. (2019). Incorporating truck speed effect on evaluation and design of flexible pavement systems. International Journal of Pavement Research and Technology, 13(1), 55-63. https://doi.org/10.1007/s42947-019-0085-1.(Mshali & Steyn, 2019)
Nega, A., Nikraz, H., & Al-Qadi, I. L.(2016). Dynamic analysis of falling weight deflectometer. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 427-437. https://doi.org/10.1016/j. jtte.2016.09.010. (Nega, Nikraz, & Al-Qadi, 2016)
Prastyanto, C. A., & Mochtar, I. B. (2017). Prediction of Flexible Pavement Deflection Based on Falling Weight Deflectometer, FWD, for Highways Traversed by Heavy Overloaded Vehicles (Case Study on Arterial and Collector Roads in Tuban, East Java, Indonesia). IPTEK Journal of Proceedings Series, 3(6), 647-651. https://doi.org/10.12962/j23546026.y2017i6.3316.
Rashid, Z. A., & Ahmed, B. A. A. (2019). Data Processing, Storage, and Analysis: Applying Computational Procedures to the Case of a Falling Weight Deflectomer (FWD). Journal of Physics: Conference Series, 1362, 012145. https://doi.org/10.1088/1742-6596/1362/1/012145.
Tarefder, R. A., & Ahmed, M. U. (2014). Modeling of the FWD Deflection Basin to Evaluate Airport Pavements. International Journal of Geomechanics, 14(2), 205-213. https://doi.org/10.1061/(asce)gm.1943-5622.0000305.
Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design (2nd Revised ed.). New York, Unite States of America: Wiley.Brave, R. (2001, December 10). Governing the genome. Retrieved June 12, 2001.