Space recognition with path optimization using the “turtlebot3 burger” robot
Main Article Content
Abstract
device performance tests were carried out inside a hexagonal track. Each test has an increasing level of complexity, which allowed determining an algorithmic execution with results that lead to incremental development in robot programming. The results obtained are conditioned by the hardware and software connection and programming modes, through the use of the Robot Operating System (ROS), and the execution of a series of tests that focus on applying "Dijkstra and A Star" algorithms that allow optimizing routes with a robot and simulate them in "Rviz" as a 3D visualization tool for ROS applications. Finally, the theoretical part related to the work of algorithms and their programming was verified using this robotic platform, which manages to demonstrate that the initially proposed, defined objectives are met, such as the recognition and planning of a trajectory on flat terrain with obstacles , from a starting point to an end point as a target or arrival point.
Downloads
Article Details
DECLARATION OF ORGINIALITY OF SUBMITTED ARTICLE
With this document, I/We certify that the article submitted for possible publication in the institutional journal INGENIO MAGNO of the Research Center Alberto Magno CIIAM of the University Santo Tomás, Tunja campus, is entirely of my(our) own writing, and is a product of my(our) direct intellectual contribution to knowledge.
All data and references to completed publications are duly identified with their respective bibliographical entries and in the citations thus highlighted. If any adjustment or correction is needed, I(we) will contact the journal authorities in advance.
Due to that stated above, I(we) declare that the entirety of the submitted material is in accordance with applicable laws regarding intellectual and industrial property, and therefore, I(we) hold myself(ourselves) responsible for any complaint related to it.
If the submitted article is published, I(we) declare that I(we) fully relinquish publishing rights of the article to the University Santo Tomás, Tunja campus. As remuneration for this relinquishment of rights, I(we) declare my(our) agreement to receive two (2) copies of the edition of the journal in which my(our) article appears.
References
Julius S. Fusic, P. Ramkumar y K. Hariharan, «Path planning of robot using modified Dijkstra Algorithm,» IEEE, 2018.
Kosari A. y M. M. Teshnizi , «Optimal Trajectory Design for Conflict Resolution,» Proceedings of the 6th RSI,International Conference on Robotics and Mechatronics (IcRoM 2018) IEEE, pp. 23-25, 2018.
Restrepo J. C., J. Villegas, A. Arias, S. Serna y C. madrigal, Trajectory Generation for a Robotic in a Robocup Test Scenery using Kalman filter and BSpline curves, Antioquia: IEEE, 2012.
Alfonso-Mora, Margareth Lorena; Ávila- Barón, Adolfo, Cambios cinemáticos de la marcha en pacientes con artrosis de rodilla con diferentes descargas de peso, Revista Ciencias de la Salud, vol. 12, núm. 3, -, 2014, pp. 319-329, Universidad del Rosario Bogotá, Colombia.
Mobile Robot Using an Adaptable Fuzzy Control on a Digital Signal Processor, BA Ávila - 2006 - Tesis de Maestría Universidad Nacional de Colombia.
R. Martínez Ángel, J. Barrero Pérez y D. A. Tibaduiza Burgos, «Algoritmos de Planificación de Trayectorias para un Robot Móvil,» ResearchGate, Agosto 2006.
F. Benavides, Planificación de movimientos aplicada en robótic autónoma móvil, Montevideo, 2012.
V. Zambrano, Implementacíon de Algoritmos de Determinacion de Rutas para el Robotino® de Festo, Quito, 2015.
MR. Reina, SLC Chía, DM Ávila, Automatización residencial un desafío profesional para el monitoreo de personas en condición de discapacidad visual, Ingenio Magno 10-2, pg 50-64.
P. E. Hart, N. J. Nilsson y B. Raphael, «A Formal Basis for the Heuristic Determination of Minimum Cost Paths.,» IEEE Transactions on Systems Science and Cybernetics, vol. 4, pp. 100-107, 1998