Space recognition with path optimization using the “turtlebot3 burger” robot

Main Article Content

David Leonardo Martínez
Rojas Barreto Rojas Barreto
William Fernando Bernal

Abstract

This research is a contribution to mobile robotics for the planning of trajectories of an autonomous robot. For the case study, the TURTLEBOT3 BURGER robot will be used. With this
device performance tests were carried out inside a hexagonal track. Each test has an increasing level of complexity, which allowed determining an algorithmic execution with results that lead to incremental development in robot programming. The results obtained are conditioned by the hardware and software connection and programming modes, through the use of the Robot Operating System (ROS), and the execution of a series of tests that focus on applying "Dijkstra and A Star" algorithms that allow optimizing routes with a robot and simulate them in "Rviz" as a 3D visualization tool for ROS applications. Finally, the theoretical part related to the work of algorithms and their programming was verified using this robotic platform, which manages to demonstrate that the initially proposed, defined objectives are met, such as the recognition and planning of a trajectory on flat terrain with obstacles , from a starting point to an end point as a target or arrival point.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martínez, D. L., Rojas Barreto, R. B., & Bernal, W. F. (2020). Space recognition with path optimization using the “turtlebot3 burger” robot. Ingenio Magno, 11(1), 112-122. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2054
Section
Artículos Vol. 11-1
Author Biographies

David Leonardo Martínez

Conecta Comunicaciones S.A.S.

Rojas Barreto Rojas Barreto

Conecta Comunicaciones S.A.S

William Fernando Bernal

Universidad Juan de Castellanos

References

Mahdavi A. y M. Carvalho, «Optimal Trajectory and Schedule Planning for Autonomous Guided Vehicles in Flexible Manufacturing System,» IEEE, 2018.

Julius S. Fusic, P. Ramkumar y K. Hariharan, «Path planning of robot using modified Dijkstra Algorithm,» IEEE, 2018.

Kosari A. y M. M. Teshnizi , «Optimal Trajectory Design for Conflict Resolution,» Proceedings of the 6th RSI,International Conference on Robotics and Mechatronics (IcRoM 2018) IEEE, pp. 23-25, 2018.

Restrepo J. C., J. Villegas, A. Arias, S. Serna y C. madrigal, Trajectory Generation for a Robotic in a Robocup Test Scenery using Kalman filter and BSpline curves, Antioquia: IEEE, 2012.

Alfonso-Mora, Margareth Lorena; Ávila- Barón, Adolfo, Cambios cinemáticos de la marcha en pacientes con artrosis de rodilla con diferentes descargas de peso, Revista Ciencias de la Salud, vol. 12, núm. 3, -, 2014, pp. 319-329, Universidad del Rosario Bogotá, Colombia.

Mobile Robot Using an Adaptable Fuzzy Control on a Digital Signal Processor, BA Ávila - 2006 - Tesis de Maestría Universidad Nacional de Colombia.

R. Martínez Ángel, J. Barrero Pérez y D. A. Tibaduiza Burgos, «Algoritmos de Planificación de Trayectorias para un Robot Móvil,» ResearchGate, Agosto 2006.

F. Benavides, Planificación de movimientos aplicada en robótic autónoma móvil, Montevideo, 2012.

V. Zambrano, Implementacíon de Algoritmos de Determinacion de Rutas para el Robotino® de Festo, Quito, 2015.

MR. Reina, SLC Chía, DM Ávila, Automatización residencial un desafío profesional para el monitoreo de personas en condición de discapacidad visual, Ingenio Magno 10-2, pg 50-64.

P. E. Hart, N. J. Nilsson y B. Raphael, «A Formal Basis for the Heuristic Determination of Minimum Cost Paths.,» IEEE Transactions on Systems Science and Cybernetics, vol. 4, pp. 100-107, 1998