Caracterización del funcionamiento de un biodigestor tubular alimentado con estiércol porcino en la amazonia ecuatoriana
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
DECLARACIÓN DE ORIGINALIDAD DE ARTÍCULO PRESENTADO
Por medio del presente documento, certifico(amos) que el artículo que se presenta para posible publicación en la revista institucional INGENIO MAGNO del Centro de Investigaciones de Ingeniería Alberto Magno CIIAM de la Universidad Santo Tomás, seccional Tunja, es de mi (nuestra) entera autoría, siendo su contenido producto de mi (nuestra) directa contribución intelectual y aporte al conocimiento.
Todos los datos y referencias a publicaciones hechas están debidamente identificados con su respectiva nota bibliográfica y en las citas que se destacan como tal. De requerir alguna clase de ajuste o corrección, comunicaré(emos) de tal procedimiento con antelación a los responsables de la revista.
Por lo anteriormente expresado, declaro(amos) que el material presentado en su totalidad se encuentra conforme a la legislación aplicable en materia de propiedad intelectual e industrial de ser el caso, y por lo tanto, me(nos) hago (hacemos) absolutamente responsable(s) de cualquier reclamación relacionada a esta.
En caso que el artículo presentado sea publicado, manifiesto(amos) que cedo(emos) plenamente a la Universidad Santo Tomás, seccional Tunja, los derechos de reproducción del mismo.
Citas
Stoddard, E. A., & Hovorka, A. (2019). Animals, vulnerability and global environmental change: The case of farmed pigs in concentrated animal feeding operations in North Carolina. Geoforum, 100, 153-165. doi:10.1016/j.geoforum.2019.01.002
Takahashi, Y., Nomura, H., Son, C. T., Kusudo, T., & Yabe, M. (2020). Manure management and pollution levels of contract and non-contract livestock farming in Vietnam. Science of the Total Environment, 710, 136200.
Hadlocon, L., Zhao, L., Bohrer, G., Kenny, W., Garrity, S., Wang, J., . . . Upadhyay, J. (2015). Modeling of particulate matter dispersion from a poultry facility using AERMOD. Journal of the Air & Waste Management Association, 65(2), 206-217. doi:10.1080/10962247.2014.986306.
Arias Martínez, S. A., Betancur Toro, F. M., Gómez Rojas, G., Salazar Giraldo, J. P., & Hernández Ángel, M. L. (2010). Fitorremediación con humedales artificiales para el tratamiento de aguas residuales porcinas. Informador técnico, 74, 12-22.
Quishpe-López, J. D., Lliguicota-Guarquila, J. P., Sarduy-Pereira, L. B., & Diéguez-Santana, K. (2020). La producción más limpia, como estrategia de valorización (ecoeficiencia) del centro de faenamiento, Puyo, Pastaza, Ecuador. Revista Científica de la UCSA, 7(3), 59-71. doi:http://dx.doi.org/10.18004/ucsa/2409-8752/2020.007.03.059
Vera-Romero, I., Martínez-Reyes, J., Estrada-Jaramillo, M., & Ortiz-Soriano, A. (2014). Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino. Ingeniería, Investigación y Tecnología, 15(3), 429-436. doi:10.1016/S1405-7743(14)70352-X
Fan, J., Xiao, J., Liu, D., Ye, G., Luo, J., Houlbrooke, D., . . . Tian, J. (2017). Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study. Science of the Total Environment, 592, 206-214. doi:10.1016/j.scitotenv.2017.03.060
Pinos-Rodríguez, J. M., García-López, J. C., Peña-Avelino, L. Y., Rendón-Huerta, J. A., González González, C., & Tristán-Patiño, F. (2012). Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia, 46(4), 359-370
Commission, E. (2011). Report from the commission to the Council and the European Parliament on implementation of the Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural sources for the period 2004-2007 SEC(2010)118, COM(2007)47 final/2. Retrieved from Brussels: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52010DC0047R%2801%29
Cárdenas, E. V., Maldonado, J. M., Valdez, R. A., Sarduy-Pereira, L. B., & Diéguez-Santana, K. (2019). La producción más limpia en el sector porcino. Una experiencia desde la Amazonia Ecuatoriana. Anales Científicos, 80(1), 76-91. doi:http://dx.doi.org/10.21704/ac.v80i1.1288
Hien, P. T. T., Preston, T., Lam, V., & Khang, D. N. (2014). Vegetable waste supplemented with human or animal excreta as substrate for biogas production. Livestock Research for Rural Development, 26(10).
Duan, N., Khoshnevisan, B., Lin, C., Liu, Z., & Liu, H. (2020). Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environment international, 137, 105522. doi:10.1016/j.envint.2020.105522
Ramón, A., Romero, F., & Simanca, J. (2013). Diseño de un biodigestor de canecas en serie para obtener gas metano y fertilizantes a partir de la fermentación de excrementos de cerdo. Revista Ambiental agua, aire y suelo, 1(1), 15-23.
Zanabria, J. I. (2019). Evaluación de la calidad de biol de segunda y tercera generación de estiércol de cuy producido en un biodigestor instalado en el instituto regional de la costa de la UNALM. (Opción al Título Profesional de Ingeniero Ambiental ), Universidad Nacional Agraria La Molina Lima, Perú
Pedraza, G., Chará, J., Conde, N., Giraldo, S., & Giraldo, L. (2002). Evaluación de los biodigestores en geomembrana (pvc) y plástico de invernadero en clima medio para el tratamiento de aguas residuales de origen porcino. Livestock Research for Rural Development, 14(1), 2002.
Varnero Moreno, M. T. (2011). Manual de biogas. Santiago de Chile, Chile: MINENERGIA/PNUD/FAO/GEF.
Moncayo Romero, G. (2008). Dimensionamiento, Diseño y Construcción de Biodigestores y Plantas de Biogás: Aqualimpia Beratende Ingenieure.
Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., & Liu, Z. (2019). Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of environmental management, 231, 646-652. doi:10.1016/j.jenvman.2018.10.062
Salminen, E. A., & Rintala, J. A. (2002). Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading. Water Research, 36(13), 3175-3182. doi:10.1016/S0043-1354(02)00010-6
Liu, C.-f., Yuan, X.-z., Zeng, G.-m., Li, W.-w., & Li, J. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 99(4), 882-888. doi:10.1016/j.biortech.2007.01.013
Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd Edition. USA: American Public Health Association, American Water Works Association, Water Environmental Federation.
Lansing, S., Botero, R. B., & Martin, J. F. (2008). Waste treatment and biogas quality in small-scale agricultural digesters. Bioresource Technology, 99(13), 5881-5890. doi:10.1016/j.biortech.2007.09.090
Morgan Jr, H. M., Xie, W., Liang, J., Mao, H., Lei, H., Ruan, R., & Bu, Q. (2018). A techno-economic evaluation of anaerobic biogas producing systems in developing countries. Bioresource Technology, 250, 910-921. doi:10.1016/j.biortech.2017.12.013
Khan, M. A., Ngo, H. H., Guo, W. S., Liu, Y., Nghiem, L. D., Hai, F. I., . . . Wu, Y. (2016). Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresource Technology, 219(Supplement C), 738-748. doi:10.1016/j.biortech.2016.08.073
Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599-614. doi:10.1016/j.rser.2016.01.071X., & Preston, T. (1999). Gas production from pig manure fed at different loading rates to polyethylene tubular biodigesters. Livestock Research for Rural Development, 11(1).
Martínez Hernández, C. M., & García López, Y. (2016). Use of basic and specific pre-treatments for the biogas production. Revision and analysis. Revista Ciencias Técnicas Agropecuarias, 25(3), 81-92.
Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308-322. doi:10.1016/j.rser.2017.05.137
Arteaga-Pérez, L. E., Segura, C., & Santana, K. D. (2016). Procesos de torrefacción para valorización de residuos lignocelulósicos. Análisis de posibles tecnologías de aplicación en Sudamérica. Afinidad, 73(573), 60-68.
Yilmazel, Y. D., & Demirer, G. N. (2013). Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation. Waste Management & Research, 31(8), 792-804. doi:10.1177/0734242X13492005
Diéguez-Santana, K., Casas-Ledón, Y., Loureiro Salabarria, J. A., Pérez-Martínez, A., & Arteaga-Pérez, L. E. (2020). A life cycle assessment of bread production: A Cuban case study. Journal of Environmental Accounting and Management, 8(2), 125-137. doi:https://doi.org/10.5890/JEAM.2020.06.002
Taddeo, R., & Lepistö, R. (2015). Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors. Water Science and Technology, 71(6), 892-897. doi:10.2166/wst.2015.045 %J Water Science and Technology
Soto-Cabrera, A. I., Panimboza-Ojeda, A. P., Ilibay-Granda, C. G., Valverde-Lara, C. R., & Diéguez-Santana, K. (2020). Impacto ambiental de la operación del Centro de faenamiento de la ciudad de Puyo, Pastaza, Ecuador. Prospectiva, 18(1). doi:https://doi.org/10.15665/rp.v18i1.
MAG. (2018). Manual técnico para el registro y control de fertilizantes, enmiendas de suelo y productos afines de uso agrícolas Retrieved from Quito, Ecuador: http://www.agrocalidad.gob.ec/wp-content/uploads/Manual-T%C3%A9cnico-para-registro-y-control-fertilizantes-enmiendas-de-suelo-y-productos-afines-de-uso-agr%C3%ADcola-14-12-2018-publicar-web.pdf
Reglamento (UE) 2019/1009 del Parlamento Europeo, 25.6.2019 C.F.R. (2019).
Martí-Herrero, J., Alvarez, R., Cespedes, R., Rojas, M. R., Conde, V., Aliaga, L., . . . Danov, S. (2015). Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude. Bioresource Technology, 181, 238-246. doi:https://doi.org/10.1016/j.biortech.2015.01.063
Wijesinghe, D. T. N. (2017). Enhancement of methane generation by reducing nitrogen concentration during anaerobic digestion of swine manure. (Doctor of Philosophy), The University of Melbourne, Melbourne, Australia. Retrieved from http://hdl.handle.net/11343/197463Ferrer, I., Garfí, M., Uggetti, E., Ferrer-Martí, L., Calderon, A., & Velo, E. (2011). Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, 35(5), 1668-1674. doi:10.1016/j.biombioe.2010.12.036
Garfí, M., Ferrer-Martí, L., Perez, I., Flotats, X., & Ferrer, I. (2011). Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecological Engineering, 37(12), 2066-2070. doi:https://doi.org/10.1016/j.ecoleng.2011.08.018
Hadlocon, L., Zhao, L., Bohrer, G., Kenny, W., Garrity, S., Wang, J., . . . Upadhyay, J. (2015). Modeling of particulate matter dispersion from a poultry facility using AERMOD. Journal of the Air & Waste Management Association, 65(2), 206-217. doi:10.1080/10962247.2014.986306
MAE. (2015). Acuerdo Ministerial 097-A. Reforma Texto Unificado Legislación Secundaria, Medio Ambiente, Libro VI. Quito, Ecuador Retrieved from http://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf
Pu, Q., Zhao, L.-X., Li, Y.-T., & Su, J.-Q. (2020). Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. Journal of Hazardous Materials, 391, 122267. doi:10.1016/j.jhazmat.2020.122267
Torrella, S. B. (2008). Para una correcta selección y explotación de digestores anaerobios. Revista de producción animal, 20(2), 102-110.
Van Doren, L. G., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology, 225, 67-74. doi:10.1016/j.biortech.2016.11.030