Obtaining Biogas From Whey: a Resilient Alternative

Main Article Content

Rafael Ramírez Alvarado
Freddy Torres-Payoma
Carlos Vega Cárdenas
Katherine Ojeda
Manuel Escobar Díaz
Daniela Neira Quintero
Nicolás Vega Velásquez

Abstract

Abstract— In the development of new sustainable technologies, the production of biomass through the whey obtained in the transformation of dairy derivatives as raw material, is presented as a low-cost alternative. In the article, a detailed bibliographic review is developed, from the whey production process to the proposal for the implementation of a useful thermal and electrical energy cogeneration system. In the first section of the document, the reader is introduced to the biochemical and industrial process of treatment of dairy products, in the intermediate sections the process of generating electric current is described through the proposal based on the research project PS362020-2 of the University Nacional Abierta y a Distancia - UNAD in alliance with the Mayor's Office of the municipality of Sopó in Cundinamarca, where a vision of the expected environmental impact is proposed in the case of using whey as raw material. Finally, in the discussion and conclusions, the process is mentioned as an alternative for the generation of viable and resilient energy, capable of opening a market around sustainable use in the dairy sector.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ramírez Alvarado, R., Torres-Payoma, F., Vega Cárdenas, C., Ojeda, K., Escobar Díaz, M., Neira Quintero, D., & Vega Velásquez, N. (2022). Obtaining Biogas From Whey: a Resilient Alternative. Ingenio Magno, 12(2), 85-104. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2428
Section
Articulos

References

FAO. (30 de abril de 2021). FAOSTAT. Obtenido de Organización de las Naciones Unidas para la Alimentación y la Agricultura.: http://www.fao.org/faostat/es/#data

OCDE & FAO. (2017). OCDE-FAO Perspectivas Agrícolas 2017-2026. Paris. Retrieved from http://www.fao.org/home/search/en/?q=resumen de productos basicos.

Papademas, P., & Kotsaki, P. (2020). Technological Utilization of Whey towards Sustainable Exploitation. Advances in Dairy Research, 7(4), 1–10. https://doi.org/10.35248/2329-888X.19.7.231

Mazorra-Manzano (SNI I), M. Á., & Moreno-Hernández, J. M. (2019). Propiedades y opciones para valorizar el lactosuero de la quesería artesanal. CienciaUAT, 14(1), 133. https://doi.org/10.29059/cienciauat.v14i1.1134

Gosalvitr, P., Cuellar-Franca, R., Smith, R., & Azapagic, A. (2019). Energy demand and carbon footprint of cheddar cheese with energy recovery from cheese whey. Energy Procedia, 161, 10–16. https://doi.org/https://doi.org/10.1016/j.egypro.2019.02.052

Morero, B. D. V. (2014). Purificación de biogás con tecnologías de producción limpias (Doctoral dissertation).

Flórez, J. A. Á. (2005). Motores alternativos de combustión interna. Universitat Politecnica de Catalunya. Iniciativa Digital Politecnica.

Jagatheesan, K., Anand, B., Baskaran, K., Dey, N., Ashour, A. S., & Balas, V. E. (2018). Effect of nonlinearity and boiler dynamics in automatic generation control of multi-area thermal power system with proportional-integral-derivative and ant colony optimization technique. In Recent advances in nonlinear dynamics and synchronization (pp. 89-110). Springer, Cham.

Mendez Castro, C. M. Conceptualización del modelo colombiano de commodities de energía eléctrica teniendo como referencia los mercados norteamericano y español.

Andeg. (2021, 27 octubre). Asociación Nacional de Empresas Generadoras – ANDEG. Recuperado 13 de diciembre de 2021, de https://www.andeg.org/

Kuroki, T., Kabeya, K., Makino, K., Kajihara, T., Kaibe, H. H., Matsuno, H., & Fujibayashi, A. (2014). Thermoelectric Generation Using Waste Heat in Steel Works. Journal of ELECTRONIC MATERIALS, 1-6.

Hegde, S., & Trabold, T. A. (2019). Anaerobic digestion of food waste with unconventional co-substrates for stable biogas production at high organic loading rates. Sustainability (Switzerland), 11(14) doi:10.3390/su11143875.

Ramos-Suárez, J. L., Ritter, A., González, J. M., & Pérez, A. C. (2019). Biogas from animal manure: A sustainable energy opportunity in the Canary Islands. Renewable and Sustainable Energy Reviews, 104, 137-150.

Neshat, S. A., Mohammadi, M., & Najafpour, G. D. (2018). Effect of illumination intensity on photosynthesis assisted anaerobic digestion of cattle manure leachate for enhanced biogas production. Chemical Engineering Journal, 338, 8-14. doi:10.1016/j.cej.2018.01.005

Postawa, K., Szczygieł, J., & Kułażyński, M. (2021). Innovations in anaerobic digestion: A model-based study. Biotechnology for Biofuels, 14(1) doi:10.1186/s13068-020-01864-zSuñol. J. (2001). Rejuvenecimiento facial. Recuperado el 12 de junio de 2001, de http://drsunol.com.

Rezaee, A., Farzadkia, M., Gholami, M., & Kermani, M. (2020). Effect of micro-aerobic process on improvement of anaerobic digestion sewage sludge treatment: flow cytometry and ATP assessment. RSC Advances, 10(59), 35718-35728.

Prabhudessai, V.; Ganguly, A.; Mutnuri, S. (2019). Effect of caffeine and saponin on anaerobic digestion of food waste. Ann. Microbiol. 2009, 59, 643–648.

Sosa, A., Galindo, J., & Bocourt, R. (2007). Metanogénesis ruminal: aspectos generales y manipulación para su control. Revista Cubana de Ciencia Agrícola, 41(2), 105-114.

Christian, S. J., Broeders, E., & Menkveld, H. W. H. (2016). Recovery of ammonia from digestate as fertilizer. Paper presented at the WEFTEC 2016 - 89th Water Environment Federation Annual Technical Exhibition and Conference, 9 932-937. doi:10.2175/193864716819715536.

Tomei, M. C., Angelucci, D. M., & Levantesi, C. (2016). Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: analysis of process performance and hygienization potential. Science of the Total Environment, 545, 453-464.

Climate ORG. (2021, Nov, 11). Clima Sopó (Colombia). [ONLINE]. Available: Https://es.climate-data.org/

FAO. (2021. Dic, 12). Capítulo 4 - control del medio ambiente. ONLINE]. Available: https://www.fao.org/3/s8630s/s8630s06.htm
[añunga, T., Gutiérrez, H. M., Rodríguez, J. A., & Díaz, A. V. (2010). Tratamiento de residuos de DQO generados en laboratorios de análisis ambientales. Ingeniería e investigación, 30(2), 87-95.

Chamorro Guizado, G. N., & Tan Chamaya, J. (2019). Uso de un biorreactor para el tratamiento anaerobio con diferentes tipos de pH para reducir DQO y DBO del lactosuero residual.

Lara, J., Patiño, J. (2012. Costos de inversión, operación y mantenimiento (O & M) de tratamientos naturales de aguas residuales para pequeñas comunidades en Colombia. doi:10.13140/RG.2.1.3439.6642

[arrios, J. A., Cano, A., Rivera, F. F., Cisneros, M. E., & Durán, U. (2021). Efficiency of integrated electrooxidation and anaerobic digestion of waste activated sludge. Biotechnology for Biofuels, 14(1) doi:10.1186/s13068-021-01929-7

Liu, H., Sun, Y., He, X., Zhang, H., Wei, J., & Zhu, L. (2021). Microbiological synthesis of denitrifying bacteria-iron nanopartical composite material and its eminent performance in removal of nitrate-N. Separation and Purification Technology, 267 doi:10.1016/j.seppur.2021.118663

Liu, Z., Stromberg, D., Liu, X., Liao, W., & Liu, Y. (2015). A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas. Journal of Hazardous Materials, 285, 483-490. Doi: 10.1016/j.jhazmat.2014.10.009