Determining drying temperature for protease encapsulation by spray drying

Main Article Content

Yessica Lorena Díaz-Martínez
Johanna Andrea Serna-Jiménez
Laura Sofía Torres-Valenzuela
José Luis Hoyos-Concha

Abstract

Encapsulation is a technique by which substances are introduced to an array or wall system with the goal of avoiding their loss due to environmental, processing and gastrointestinal conditions to which they are generally subjected, however during this process, it is necessary to take into account the conditions under which it is carried out, in other words the concentration of coating material and the drying temperature used, in order to in this way obtain capsules with the required characteristics. Taking this into account, the optimal drying temperature is determined for the encapsulation of liquid alkaline protease enzyme DT-ZYME L 500 (Proenzimas, Colombia) at 1%, performing encapsulation by spray drying using different entry temperatures (80, 90, 100, 110, 150 °C), an exit temperature of 40 °C and a maltodextrin concentration of 50%. The performance, particle size, water activity (aw) and humidity content (CH) of said treatments were evaluated. The results showed performances of 3.83, 10.30, 12.82, 8.91 and 7.58% for treatments 1, 2, 3, 4 and 5 respectively, as well as particles sizes between 22.98±3.67 and 101.21±47.92, humidity content percentages between 5.55±0.06 and 6.66±0.03, and water activity between 0.024±0.001 and 0.053±0.001.

Downloads

Download data is not yet available.

Article Details

How to Cite
Díaz-Martínez, Y. L., Serna-Jiménez, J. A., Torres-Valenzuela, L. S., & Hoyos-Concha, J. L. (2016). Determining drying temperature for protease encapsulation by spray drying. Ingenio Magno, 7(1), 134-142. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1171
Section
Artículos Vol. 7-1

References

Alvim, I. D. et al. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT - Food Science and Technology, 65, 689-694. Doi: 10.1016/j. lwt.2015.08.049
Arslan, S., Erbas, M., Tontul, I. y Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685-690. Doi: 10.1016/j.lwt.2015.03.034
Ayala, A, Serna, L. y Mosquera, E. (2010). Liofilización de pitahaya amarilla (Selenicereus megalanthus). Vitae, 17, 121-127.
Caliskan, G. y Nur Dirim, S. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing, 91(4), 539548. Doi: 10.1016/j.fbp.2013.06.004
Ceballos-Peñaloza, A. M. (2008). Estudio comparativo de tres sistemas de secado para la producción en polvo deshidratado de fruta (tesis de maestría). Manizales: Universidad Nacional de Colombia.
Di Battista, C. A., Constenla, D., Ramírez-Rigo, M. V. y Piña, J. (2015). The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technology, 286, 193-201. Doi: 10.1016/j.powtec.2015.08.016

Ee, S. C., Jamilah, B., Muhammad, K., Hashim, D. M. y Adzahan, N. (2014). Physico-chemical properties of spray-dried red pitaya (Hylocereus polyrhizus) peel powder during storage. International Food Research Journal, 21(1), 155-160.

Escalona, S. E. (2004). Encapsulados de luteínaenocianina y su aplicación en alimentos (tesis de pregrado). Santiago de Chile: Universidad de Chile.

Estevinho, B. N., Carlan, I., Blaga, A. y Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71-78. Doi: 10.1016/j.powtec.2015.11.019

Estevinho, B. N., Damas, A. M., Martins, P. y Rocha, F. (2014). Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Research International, 64, 134-140. Doi: 10.1016/j. foodres.2014.05.057
Estevinho, B. N., Ramos, I. y Rocha, F. (2015). Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules, 78, 238-242. Doi: 10.1016/j.ijbiomac.2015.03.049

García-Cruz, E. E., Rodríguez-Ramírez, J., Méndez Lagunas, L. L. y Medina-Torres, L. (2013). Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes. Carbohydrate Polymers, 91(1), 394-402. Doi: 10.1016/j. carbpol.2012.08.048

Kar-Hing, L., Ta-Yeong, W. y Lee-Fong, S. (2013). Spray drying of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruit juices: physicochemical and antioxidant properties of the powder. International Journal of Food Science and Technology, 4(1), 23912399. Doi: 10.1111/ijfs.12230

López, O. D., Torres, L., González, M. L. y Rodríguez, C. A. (2008). Estudio de secado por aspersión hasta escala de banco del extracto acuoso de Boerhaavia erecta L. Revistas Médicas Cubanas, 13(4). Recuperado de http://scielo.sld.cu/scielo.php?script=sci_ arttext&pid=S1028-47962008000400011

López-Hernández, O. D. (2010). Microencapsulación de sustancias oleosas mediante secado por aspersión. Revista Cubana de Farmacia, 44(3), 381-389.

Lozano-Berna, M. (2009). Obtención de microencapsulados de zumo de Opuntia stricta mediante secado por atomización (tesis de pregrado). Cartagena, España: Universidad Politécnica de Cartagena.
Marques, L. G., Ferreira, M. C. y Freire, J. T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing: Process Intensification, 46(5), 451-457. Doi: Doi: /10.1016/j.cep.2006.04.011
Miravet, G. M. (2009). Secado por Atomización de zumo de granada (tesis de maestría). Cartagena, España: Universidad Politécnica de Cartagena.
Mondragón, R., Julia, J. E., Barba, A. y Jarque, J. C. (2013). El proceso de secado por atomización: formación de gránulos y cinética de secado de gotas. Boletín de la Sociedad Española de Cerámica y Vidrio, 52(4), 159-168. Doi: 10.3989/cyv.212013

Nedovic, V., Kalusevica, A., Manojlovicb, V., Levica, S. y Bugarskib, B. (2011). An overview of encapsulation technologies for food applications.
Procedia Food Science, 1, 1806-1815. Doi: 10.1016/j. profoo.2011.09.265

Porras-Saavedra, J. et al. (2015). Microstructural properties and distribution of components in microparticles obtained by spray-drying. Journal of Food Engineering, 152(0), 105-112. Doi: 10.1016/j. jfoodeng.2014.11.014

Pulido, A. y Bristain, C. I. (2010). Encapsulación de ácido ascórbico mediante secado por aspersión, utilizando quitosano como material de pared. Revista Mexicana de Ingeniería Química, 9, 189-195.

Quek, S. Y., Chok, N. K y Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. Doi: 10.1016/j. cep.2006.06.020

Ramírez, M. J., Salgado-Aristizabal, N. y Orrego-Alzate, C. E. (2012). Conservación de polifenoles en un jugo de fruta modelo secado por aspersión y liofilización. Vitae, 19(1), S87-S89.

Tan, S. P., Kha, T. C., Parks, S. E., Stathopoulos, C. E. y Roach, P. D. (2015). Effects of the spray-drying temperatures on the physicochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75. Doi: 10.1016/j. powtec.2015.04.074