Final automated welding processes for GM colmotores passenger vehicles

Main Article Content

Mauricio Ortiz
Claudia Sánchez
Hermann Fuquen

Abstract

The following article shows how challenges caused by marketing conditions in the auto manufacturing industry have generated the necessity to convert the development of technology into a continuous process. This necessity drives competitiveness. In this document, there is a brief description of the concepts related to industrial automation, an assessment of automotive assembly processes, and variables to be evaluated and controlled in order to better plan automated projects based on robotic welding. Additionally, a brief revision of the automated processes of welding is provided with the latest technology and industry trends in mind. The application of an automated welding process as part of a Technological Development project is presented, which after being applied on an industrial level at GM Colmotores, generated positive results in the processes of ergonomics, manufacturing, and quality.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ortiz, M., Sánchez, C., & Fuquen, H. (2016). Final automated welding processes for GM colmotores passenger vehicles. Ingenio Magno, 7(1), 10-21. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1163
Section
Artículos Vol. 7-1

References

Aslanlar, S., Ogur, A., Ozsarac, U. y Ilhan, E. (2008). Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding. Materials and Design, 29(7), 1427-1431.

Berglunda, A. F., Fässberg, T., Hellman, F., Davidsson, A. y Stahre, J. (2013). Relations between complexity, quality and cognitive automation in mixed-model assembly. Journal of Manufacturing Systems, 33(3), 49-455.

Córdoba, E. (2006). Manufactura y automatización. Revista Ingeniería e Investigación, 26(3), 120-128.
Chou, W., You, L. y Wang, T. (2006). Automatic path planning for welding robot based on reconstructed surface model. Robotic Welding, Intelligence and Automation, 362, 153-161.
GM Colmotores Medios (2014, 4 de septiembre). Equipo de Manofactura de GM Colmotores recibe reconocimiento global por plan de automatizaciones de bajo costo. Recuperado de http://media.gm.com/media/co/es/chevrolet/home.detail.html/content/Pages/news/co/es/2014/sept/0904-equipo.html

Gu, Z. R., Zue, L. W., Wei, J. H. y You, B. (2000). The working path panning of welding robot of hydraulic turbine runners. Journal of Harbin University of Science and Technology, 6.

Gorlach, I. y Wessel, O. (2008). Optimal level of automation in the automotive. Engineering Letters, 16(1).
Hong, T. S., Ghobakhloo, M. y Khaksar, W. (2014). Robotic welding technology. En S. Hashmi et al. (Eds), Comprehensive Materials Processing (pp. 10-17). Oxford: Elsevier.
Kalpakjian, S. y Schmid, S. R. (2002). Manufactura, ingeniería y tecnología. Ciudad de México: Pearson. Kumar, R. y Garg, R. K. (2010). Optimal selection of robots by using distance based approach method. Robotics and Computer-Integrated Manufacturing, 26(5), 500-506.
Michalos, G., Makris, S., Papakostas, N., Mourtzis, D. y Chryssolouris, G. (2010). Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. Journal of Manufacturing Science and Technology, 2(2), pp.81-91.
Pan, Z., Polden, J., Larkin, N. y Van, S. (2012). Recent progress on programming methods for industrial robots. Robotics and Computer Integrated Manufacturing, 28 (2), 87-94.
Rico, M. J., Sánchez, C. M. y Laverde, R. (2012). Sector automotor colombiano: innovar para crecer. Revista ANDI, 234, 10-17.
Rivera, S. (2011). Documento resumen Proyecto de Automatización en Procesos de Pintura y Soldadura. Bogotá: General Motors.
Sung, B., Kim, I., Xue, Y., Kim, H. y Cha, Y. (2007). Fuzzy regression model to predict the bead geometry in the robotic welding process. Acta Metallurgica Sinica, 20(6), 391-397.
Trnka, K. y Bozek, P. (2013). Optimal motion planning of spot welding robot applications. Applied Mechanics and Materials, 248, 589-593.
Wang, J. H., Xiao, R. H. y Ma, Y. L. (2011). Research on welding robot path panning using ant colony optimization. Advanced Manufacturing Systems, 201, 1926-1929.
Wu, Y. Q., Yuan, Z. H. y Wang, J. H. (2012). A fuzzy controller design of seam tracking for welding robot. En 23rd International Conference on Industrial Electronics, Control and Instrumentation (pp. 1367-1372). Doi: 10.1109/IECON.1997.668515
Xu, D., Wang, L. y Tan, M. (2004). Image processing and visual control method for arc welding robot. En IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 727-732). Doi: 10.1109/ROBIO.2004.1521871

Yang, X. (2011). Key technology research on the flexible welding line for multi-model automobile. En Second International Conference on Digital Manufacturing and Automation (ICDMA 2011). Doi: 10.1109/ ICDMA.2011.169

Yue, H., Li, K., Zhao, H. y Zang, Y (2006). Vision-based pipeline girth-welding robot and image processing of weld seam. Industrial Robot: An International Journal, 36(3), 284-289.