Prototype of a Savonius Type Micro Hydraulic Turbine Manufactured by Additive Manufacturing with PLA to Generate Electric Energy https://doi.org/10.15332/24222399.3038

Main Article Content

Flavio Joe Beltrán Sánchez
Yuen Keynes López Bravo

Abstract

Abstract— The main objective of this research is the development of a prototype of a Savonius-type hydraulic microturbine, manufactured by additive manufacturing with PLA (polylactic acid), for the generation of electrical energy.  The fabrication of the prototype was carried out using PLA, a 3D printing material known for its biodegradability and ease of use in additive manufacturing. Experimental tests were carried out to measure the performance of the prototype under different water flow conditions, determining its capacity to generate electrical energy efficiently. Finally, the technical and economic feasibility of the prototype was evaluated.

Downloads

Download data is not yet available.

Article Details

How to Cite
Beltrán Sánchez , F. J., & López Bravo , Y. K. (2024). Prototype of a Savonius Type Micro Hydraulic Turbine Manufactured by Additive Manufacturing with PLA to Generate Electric Energy: https://doi.org/10.15332/24222399.3038 . Ingenio Magno, 14(2), 84-93. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/3038
Section
Articulos

References

[1] S. Worasinchai and K. Suwannakij, “Performance characteristics of the Savonius turbine,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2018. doi: 10.1088/1757-899X/297/1/012056.

[2] W. Łyskawiński, K. Kowalski, and R. M. Wojciechowski, “Experimental Assessment of Suitability of Darrieus and Savonius Turbines for Obtaining Wind Energy from Passing Vehicles,” Energies 2024, Vol. 17, Page 1558, vol. 17, no. 7, p. 1558, Mar. 2024, doi: 10.3390/EN17071558.

[3] C. Diago Vidal, “Diseño de un aerogenerador Savonius para uso doméstico,” Universitat Politécnica de Valéncia, Valencia, 2019.

[4] Z. Driss, O. Mlayeh, S. Driss, D. Driss, M. Maaloul y M. S. Abid, “Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors”, Energy, vol. 89, pp. 708-729, 2015.

[5] S. Roy y U. K. Saha, “Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine”, Applied Energy, vol. 137, p. 117–125, 2015.

[6] G. Ferrari, D. Federici, P. Schito, F. Inzoli y R. Mereu, “CFD study of Savonius wind turbine: 3D model validation and parametric analysis”, Renewable Energy, vol. 105, pp. 722-734, 2017.

[7] W. Husam and T. Allan, “US20170107972A1 - Vertical wind turbine - Google Patents,” Google Patentes. Accessed: May 29, 2024. [Online]. Available: https://patents.google.com/patent/US20170107972A1/en?q=(savonius+turbine)&oq=savonius+turbine.

[8] L. Dan, B. Michael, G. Colin, and B. Nick, “US8167533B2 - Wind energy system,” Google Patents. Accessed: May 29, 2024. [Online]. Available: https://patents.google.com/patent/US8167533B2/en?q=(savonius+turbine)&oq=savonius+turbine.

[9] Ji Yan et al., “CN108661856B - Efficient vertical-axis Savonius wind turbine,” Google Patents. Accessed: May 29, 2024. [Online]. Available: https://patents.google.com/patent/CN108661856B/en?q=(savonius)&oq=savonius++&page=6.

[10] Zhang Jeff, Du Yipeng, Hu Guang, Song Xiaowen, and He Hongbin, “CN201963471U - Blade of magnetic levitation savonius rotor wind driven generator,” Google Patents. Accessed: May 29, 2024. [Online]. Available: https://patents.google.com/patent/CN201963471U/en?q=(Savonius+rotor)&oq=Savonius+rotor&page=4.

[11] Perdomo, C. M. V., Salazar, A. O., Velasquez, M. N. M., & Patiño, A. P. (2018). Estado del arte; del uso de la eichhornia crassipes en la fitorremediación de aguas residuales industriales. Ingenio Magno, 9(2), 105-130.

[12] Doohwan Kim, “KR20110136262A - Wind-acceleration device for windmill,” Google Patents. Accessed: May 29, 2024. [Online]. Available: https://patents.google.com/patent/KR20110136262A/en?q=(Savonius+rotor)&oq=Savonius+rotor&page=9