Proposal of Load Rejection Scheme Due to Minimum voltage in the Moyobamba – Tarapoto System at 138 Kv https://doi.org/10.15332/24222399.2934

Main Article Content

Renato Tirado Salazar
Saúl Andrés Hernández Moreno
Juan Vives Garnique

Abstract

The research begins with the objective of mitigating supply interruptions in the Cajamarca Norte – Caclic – Belaunde Terry – Moyobamba – Tarapoto – Juanji – Tochache – Aucayacu – Tingo María transmission system, through a proposal for an automatic load rejection scheme based on the detection of minimum voltage levels, and through the selective disconnection of specific loads in the system. To obtain the proposal for the automatic load rejection scheme, initially an exploration of the theoretical concepts involved in our research was carried out, to then collect the required information to help update the analyzed electrical system and validate our proposed results. After obtaining the results of various scenarios, it was possible to determine the optimal percentage for automatic load rejection in the studied system. Which allowed us to clearly observe the impact of the reset of the voltage values after the automatic load rejections were carried out. At the conclusion of the investigation, it was determined that the Belaunde Terry, Moyobamba, Tarapoto and Bellavista substations are the most sensitive to variations in electrical voltage, which makes them more susceptible to reaching the point of collapse with minimum levels of voltage. Based on this observation, it is suggested to include the participation of the loads of these substations in the load rejection scheme when the voltage reaches critical levels.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tirado Salazar, R., Hernández Moreno, S. A., & Vives Garnique, J. (2024). Proposal of Load Rejection Scheme Due to Minimum voltage in the Moyobamba – Tarapoto System at 138 Kv: https://doi.org/10.15332/24222399.2934 . Ingenio Magno, 14(2), 33 - 44. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2934
Section
Articulos

References

1. Osinergmin. (2010). Norma técnica de calidad de los servicios eléctricos. Lima: Osinergmin.
2. Comité de Operación Económico del Sistema Eléctrico Peruano. (2017). Glosario de abreviaturas y definiciones utilizadas en los procedimientos técnicos del COES-SINAC (p. 36).
3. J. S. & Y. H. (2012). Design and testing of selected system integrity protection schemes (SIPS). IEEE PSRC Working Group C15, p. 69.
4. Rodríguez Castillo, D. A. (2003). Criterios, metodología y desarrollo de un esquema de rechazo de carga por mínima frecuencia para el sistema eléctrico peruano [Arte]. Universidad Nacional de Ingeniería.
5. Hernández Rojas, J. F., Quintero Gamboa, Y., & Cely Guezguan, L. (2021). Diseño y construcción de un banco de pruebas de ventilador axial para los laboratorios de la Facultad de Ingeniería Mecánica de la Universidad Santo Tomás Seccional Tunja. Ingenio Magno, 11(2), 118-134. Recuperado de http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2184
6. Verayiah, R., Mohamed, A., Shareef, H., & Zainal Abidin, I. (2014). Review of under-voltage load shedding schemes in power system operation. University Kebangsaan Malaysia and University Tenaga Nasional, p. 5.
7. Raja Masood, L., Mohd Wazir, M., Sajid Hussain, Q., Nayyar Hussain, M., Shariq, S., & Abdul Rauf, B. (2016). Under voltage load shedding scheme to provide voltage stability. Department of Electrical Engineering, NED University of Engineering and Technology Sindh; Department of Electrical Engineering, Mehran UET SZAB Campus Khairpur Mir's; Department of Electrical Engineering, Mehran UET Jamshoro Sindh, p. 9.
8. Kanimozhi, R., Selvi, K., & Balaji, K. (2014). Multi-objective approach for load shedding based on voltage stability index consideration. Department of Electrical and Electronics Engineering, BIT Campus, Anna University – Tiruchirappalli; Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, p. 9.
9. Ministerio de Energía y Minas. (2011). Código Nacional de Suministro (p. 328).
10. Mejía Córdoba, R. A., Moreno López, N. M., Rodríguez Aya, A., Chica García, J. A., Figueredo Luna, J. A., & Rodríguez Balanta, J. E. (2020). Diagnóstico uso racional del consumo de energía en hogares del municipio de Chocontá (Cundinamarca) y en los barrios de Cooviprof y El Troncal (Valle del Cauca) en Colombia. Ingenio Magno, 10(1), 152-166. Recuperado de http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1915
11. Osinergmin. (2005). Norma técnica para la coordinación de la operación en tiempo real de los sistemas interconectados. Lima: Osinergmin.
12. Charles, K., & Matthew, S. N. O. (2006). Fundamentos de circuitos eléctricos. México: McGraw-Hill/Interamericana Editores.
13. Ighodalo Okhueleigbe, E., & Ailenokhuoria Ogbekhiulu, J. (2017). Utilization of under frequency load shedding (UFLS) and under voltage load shedding (UVLS) schemes in improving voltage level at injection substations. Department of Electrical/Electronic Engineering, Federal University of Petroleum Resources Effurun, p. 88.
14. Kundur, P. (1994). Power system stability and control. United States of America: McGraw-Hill.
15. Ledesma, P. (2008). Regulación de frecuencia y potencia. Madrid: Universidad Carlos III de Madrid.
16. Operating Committee. (2006). Remedial action scheme design guide (p. 26).
17. Pauccara Hancco, E. Y. (2017). Minimizar el rechazo de carga por mínima frecuencia en la barra 220kV Las Bambas del sistema sur SEIN aplicando estabilizadores de sistemas de potencia (PSS) [Arte]. Universidad Nacional San Agustín.

Most read articles by the same author(s)