Design and Assembly of a Photovoltaic System for the Propulsion of a 14-foot Fishing Boat

Main Article Content

Víctor Alberto López Gutiérrez
Orlando Díaz Parra
Yolanda Torres Pérez

Abstract

Lake Tota is a point of confluence for the growing tourism in the department of Boyacá and the region; sport fishing activities occupy a relevant place in the region's tourism offer. Climate change and the demand for the implementation of cleaner energies that reduce CO2 emissions is the social and productive reality worldwide. Consequently, the design, construction and implementation of a photovoltaic system for the propulsion of a 14-foot aluminum fishing boat with an electric motor is proposed. For this purpose, hydrodynamic, economic, financial and environmental benefit studies were carried out, which also included the corresponding electromechanical and solar calculations. A functional design was established for a boat with a photovoltaic system with daytime autonomy of 2 hours and 48 minutes, and nighttime autonomy of only 38 minutes. In Colombia, further studies are required to provide sustainable solutions for activities that require the use of boats, since there is sufficient solar radiation for the implementation of similar projects.

Downloads

Download data is not yet available.

Article Details

How to Cite
López Gutiérrez, V. A., Díaz Parra, O., & Torres Pérez, Y. (2023). Design and Assembly of a Photovoltaic System for the Propulsion of a 14-foot Fishing Boat. Ingenio Magno, 14(1), 26 - 36. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2712
Section
Articulos

References

Campillo, J. y Dominguez-Jimenez, J. A. y Cabrera, J. (2019). Sustainable Boat Transportation Throughout Electrification of Propulsion Systems: Challenges and Opportunities. 2019 2nd Latin American Conference on Intelligent Transportation Systems (ITS LATAM), 1-6. https://doi.org/10.1109/ITSLATAM.2019.8721330
Ciacciarelli, J. y Wilmsmeier, G. y Sáenz, J. E. y Schuschny, A. (2020). Análisis de sustitución de combustibles del sistema de transporte fluvial de la Hidrovía Paraguay - Paraná. Organización Latinoamericana de Energía. https://biblioteca.olade.org/opac-tmpl/Documentos/old0451.pdf
Colombia. Ministerio de Minas y Energía. (2013). Resolución 90708 - Por la cual se expide el Reglamento Técnico de Instalaciones Eléctricas – RETIE. Diario Oficial No. 48.904. https://www.cancilleria.gov.co/sites/default/files/Normograma/docs/resolucion_minminas_90708_2013.htm
De la Llana, I. (2011). Nuevo sistema de propulsión naval. [Tesis de Doctorado]. Universidad del País Vasco. http://hdl.handle.net/10810/12273
Ghenai, C. y Al-Ani, I. y Khalifeh, F. y Alamaari, T. y Hamid, A. K. (2019). Design of Solar PV/Fuel Cell/Diesel Generator Energy System for Dubai Ferry. 2019 Advances in Science and Engineering Technology International Conferences (ASET), 1-5. https://doi.org/10.1109/ICASET.2019.8714292
Global Solar Atlas. (2022). Irradiación solar en el Lago de Tota Boyacá.
Hernández, R. y Fernández, C. y Baptista, M. del P. (2014). Metodología de la investigación (6a). McGraw-Hill.
Incombustion. (2016). Consultoría técnica para el fortalecimiento y mejora de la base de datos de factores de emisión de los combustibles colombianos. FECOC. Incombustion. http://www.upme.gov.co/calculadora_emisiones/aplicacion/Informe_Final_FECOC.pdf
Kim, M. y Hizir, O. y Turan, O. y Day, S. y Incecik, A. (2017). Estimation of added resistance and ship speed loss in a seaway. Ocean Engineering, 141, 465-476. https://doi.org/10.1016/j.oceaneng.2017.06.051
LiTime. (2022). LiTime 24V 100Ah LiFePO4 Lithium Battery, Build-In 100A BMS, 2560Wh Energy. https://www.litime.com/products/litime-24v-100ah-lifepo4-lithium-battery
López, J. M. (2021). Electrificación de Buques. [Tesis de Maestría]. Universidad del País Vasco. http://hdl.handle.net/10810/52686
Nugraha, I. M. A. y Luthfiani, F. y Sotyaramadhani, G. y Widagdo, A. y Desnanjaya, I. G. M. N. (2022). Technical-economical assessment of solar PV systems on small-scale fishing vessels. International Journal of Power Electronics and Drive Systems (IJPEDS), 13(2), 1150. https://doi.org/10.11591/ijpeds.v13.i2.pp1150-1157
Petkovic, M. y Zubčic, M. y Krčum, M. y Vujovic, I. (2020). Maritime Green Solution for Traffic Congestion. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 14(1), 97-103. https://doi.org/10.12716/1001.14.01.11
Puig, S. (2022). Movilidad sostenible marítima. Los barcos solares. Universidad Pontificia de Comillas. http://hdl.handle.net/11531/63388
Torqueedo. (2020). Travel Outboards. Products. Outboards. Travel. https://www.torqeedo.com/en/products/outboards/travel
UNITECK. (2022). Paneles solares rígidos UNISUN M & BC. https://cdn.enfsolar.com/z/pp/t57kfu0k0wx9/panneau-solaire-unisun-100-12-m-0446-es-wGRCZwcrF.pdf
Victron Energy. (2022). Controladores de carga BlueSolar MPPT 100/30 & 100/50. https://www.victronenergy.com.es/upload/documents/Datasheet-BlueSolar-charge-controller-MPPT-100-30-&-100-50-ES.pdf
Yüksel, O. y Göksu, B. y Bayraktar, M. (2023). Propulsion and photovoltaic charging system parameter computation for an all-electric boat. Ships and Offshore Structures, 1-14. https://doi.org/10.1080/17445302.2023.2195239
Zagarra, J. C. (2021). Análisis técnico-económico de casos de electrificación de la propulsión de buques de gran eslora. [Tesis de Maestría]. Universidad Politécnica de Cataluña. http://hdl.handle.net/2117/350786