Estudio del Mecanismo de Pirólisis de Residuos de Yuca Mediante Análisis Termogravimétrico Acoplado a la Espectroscopía Infrarroja

Main Article Content

Katherine Pugliese Barbosa
Loraine I. Dávila Caro
Santiago York Castillo
Alberto R. Albis Arrieta
Diego M. Yepes Maya
Angie L. Espinosa Sarmiento
Juan B. Restrepo Betancourt

Abstract

In the present work, pyrolysis of cassava residues was carried out through thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (FTIR). The starting biomass residues were characterized based on calorific value. immediate and elementary analysis. The experiments were carried out using three heating rates (50, 75 and 100 K/min) in an inert atmosphere with a heating ramp from room temperature (~25 °C) to 900 °C. Initial characterization results showed that the low ash content of 1.8% by mass and the high calorific value of 15.2 MJ/kg make this residue a potential candidate for energy use. During the heat treatment in an inert atmosphere, the cassava residue experienced a main event of mass loss at 339.57 °C for 50 and 75 K/min and displacement by 34 °C when treating the sample at 100 K/min. In the thermogravimetric profiles, the samples treated at 50 and 75 K/min have similar behaviors, however, a greater loss of mass was found when the sample is submitted to 50 K/min, resulting in 12.15% of the carbonized, however at 50 K/min the decomposition rate is lower in the main event compared to the other higher heating rates. By analyzing the FTIR spectra, it was detected the formation of CO2, methane, stretching bands of the hydroxyl, methoxy and carboxyl groups attributed to alcohols, ethers and carboxylic acids, respectively, decomposition product of cellulose, hemicellulose and lignin.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pugliese Barbosa, K., Dávila Caro, L. I., York Castillo , S., Albis Arrieta, A. R., Yepes Maya, D. M., Espinosa Sarmiento, A. L., & Restrepo Betancourt, J. B. (2023). Estudio del Mecanismo de Pirólisis de Residuos de Yuca Mediante Análisis Termogravimétrico Acoplado a la Espectroscopía Infrarroja. Ingenio Magno, 13(2), 42 - 47. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2596
Section
Articulos

References

[1] Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Vo DVN. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour Technol. 2022;344(PB):126203. doi:10.1016/j.biortech.2021.126203

[2] Tursi A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res J. 2019;6(2):962-979. doi:10.18331/BRJ2019.6.2.3

[3] Okolie JA, Nanda S, Dalai AK, Kozinski JA. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization. 2021;12(5):2145-2169. doi:10.1007/s12649-020-01123-0

[4] Poveda-Giraldo JA, Solarte-Toro JC, Cardona Alzate CA. The potential use of lignin as a platform product in biorefineries: A review. Renew Sustain Energy Rev. 2021;138(January):110688. doi:10.1016/j.rser.2020.110688

[5] Lepage T, Kammoun M, Schmetz Q, Richel A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy. 2021;144(November 2020):105920. doi:10.1016/j.biombioe.2020.105920

[6] Alhazmi H, Loy ACM. A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends. Bioresour Technol Reports. 2021;14(March):100682. doi:10.1016/j.biteb.2021.100682

[7] Nanduri A, Kulkarni SS, Mills PL. Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review. Renew Sustain Energy Rev. 2021;148(July 2020):111262. doi:10.1016/j.rser.2021.111262

[8] Weerachanchai P, Tangsathitkulchai C, Tansathitkulchai M. Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Suranaree J Sci Technol. 2010;17(4):387-400.

[9] Huang H, Liu J, Liu H, Evrendilek F, Buyukada M. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Convers Manag. 2020;207(February):112552. doi:10.1016/j.enconman.2020.112552

[10] Larkin P. INFRARED AND RAMAN SPECTROSCOPY: PRINCIPLES AND SPECTRAL INTERPRETATION. Vol 9. 1st ed. (Elsevier, ed.). Elsevier; 2011. doi:10.3390/rel9100297

[11] Müsellim E, Tahir MH, Ahmad MS, Ceylan S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Therm Eng. 2018;137(March):54-61. doi:10.1016/j.applthermaleng.2018.03.050