Analysis of a total hip Prosthesis Proposal by the Finite Element Method under the Conditions of ISO 7206

Main Article Content

Sergio Herrera Paz
Agustín Vidal Lesso
Raúl Lesso Arroyo

Abstract

The biomechanical analysis of a new design of total hip prosthesis was performed, using the Finite Element Method. A model whose geometric characteristics provide a better self-adjustment and bone integration was proposed. The conditions for this analysis, as well as its restrictions, were under the conditions specified in ISO 7206-4: 2010. 316L stainless steel was used for the hemiprosthesis and the UHMWPE polymer for the insert. A non-linear analysis was carried out by contact pairs and by material. For the latter, an isotropic multiline nonlinear constitutive model was considered for hardening. The results obtained were the maximum efforts and displacements that the prosthesis experienced. For the load condition, a sinusoidal force was applied at 1 Hz of 200 N (preload), to 2300 N, where the following efforts were obtained: in the hemiprosthesis, a maximum effort of 42.85 MPa, below the yield stress of the material (290 MPa), in the middle acetabular component 1.78 MPa, far from the yield of the material (23 MPa) and for the bone cement 15.96 MPa, below the yield stress (43.8 MPa). The maximum displacement was 0.053 mm below the 5 mm specified by the standard.

Downloads

Download data is not yet available.

Article Details

How to Cite
Herrera Paz, S., Vidal Lesso, A., & Lesso Arroyo, R. (2022). Analysis of a total hip Prosthesis Proposal by the Finite Element Method under the Conditions of ISO 7206. Ingenio Magno, 13(2), 19 -27. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2590
Section
Articulos

References

[1] Albiter Rodríguez Gaspar, “Análisis y desarrollo de prótesis vertebrales para la zona lumbar”, tesis de posgrado, Instituto Tecnológico de Celaya, 2014.

[2] Herrera P Sergio, “Diseño de prótesis de cadera”, tesis de licenciatura, Instituto Tecnológico de Celaya, 2016.

[3] M. S. Uddin, L. C. Zhang, “Predicting the wear of hard-on-hard hip joint prosthesis”, Wear. Vol.301. Issues 1–2. pp. 192 – 220. april – may 2013. Elsevier

[4] H. F. El´Sheikh, B.J. MacDonald, “Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading”, Journal of Materials Procesing Technology. Vol. 143-144. pp. 249-255. december 2003. Elsevier

[5] F. J. Vigil, Guerrero Jorge, “Diseño y validación a fatiga de um vastago de revisión de prótesis de cadera empleando el método de los elementos finitos”, Anales de Mecánica de la Fractura. Vol. 2, No. 18, PP. 817-822. 2011.

[6] International Standard. ISO 7206-4:2010(E). Implants for surgery – Partial and total hip joint prostheses. Part 4: Determination of endurance properties and performance of stemmed femoral components. 2013

[7] International Standard. ISO 14242-3. Implants for surgery – Wear of total hip-joint prosthesese. Part 3: Loading and displacement parameters for orbital bearing type wear testing machines and corresponding environmental conditions for test. 2009.

[8] Fernando Mendoza Vázquez, Raúl Lesso Arroyo, Ramón Rodríguez Castro “Análisis visco-hiperelástico de prótesis intervertebrales implantadas en región lumbar”, XIV Congreso de la SOMIM, Septiembre del 2016 Mérida, Yucatán. México.

[9] Volodymir Pakhaliuk, Alexander Polyakov, “Improving the finte element simualtion of wear of total hip prosthesis spherical joint with the polymeric componente”, Universitetskaya Str., Russia, 2014.

[10] American Society for Testing and Materials. ASTM F2068 - 15. Standard Specification for Femoral Prostheses – Metallic Implants.

[11] Edwin Gamboa Poveda, Robinson A. Martinez, “Acero inoxidable 316 y 316L propiedades y características”, Fundación Universitaria Los Libertadores, 2011.

[12] Klaus-Dieter Kuehn, Werner Ege, “Acrylic bone cements: mechanical and physical properties”, Endomedicine Division, Wehrheim, Germany, 2005.

[13] Sindre Nordmark Olufsen, “Numerical analysis of primary stability on cementless hip prosthesis”, Norwegian University of Science and Technology, 2012.

[14] Rico Mosqueda Luis Antonio. Pruebas de desgaste en insertos protésicos de articulación de rodilla con control de temperatura. Instituto Tecnológico de Celaya, 2015.

[15] Richard G. Budynas, J. Keith Nisbett, “Diseño em ingenieria mecânica de Shigley”, McGrawHill, 9na ed.,2008.

[16] A. Fiorentino, G. Zarattini, U. Pazzaglia, “Hip prosthesis design. Market analysis, new perspectives and an innovate solution”, University of Brescia, Italia, 2013.

[17] Simesen-de Bielke H, González-Della Valle A “Vástagos cementados en la artroplastía de cadera: História y evolución”, Hospital Weill Medical College of Cornell University, New York, USA, 2011.

[18] Richard L. Drake, Wayne Vogl, Adam W. M. Mitchell, “Grey Anatomía para estudiantes”, ElSevier, 2005.