A review of self-assembly focused on the macroscopic scale

Main Article Content

Jorge Eliecer Benitez-Prada
Héctor Plascencia Mora
Eduardo Aguilera Gómez
Julet Marcela Méndez Hernández
Juan Francisco Reveles Arredondo

Abstract

We present a review of the state of the art of self-assembly on a macroscopic scale, covering ten years, from 2012 to 2022. The study begins by mentioning its discovery, definition, fundamental characteristics, and the two main types of self-assembly. Next, we propose the opportunity to implement the autonomous assembly process as a construction alternative on the macroscopic scale, especially in engineering. In a complementary way, we expose the advantages of self-assembly on a macroscopic scale and the challenges regarding its physical and virtual implementation. Finally, we cite relevant research to finish mentioning the opportunities for future work and conclusions about self-assembly.

Downloads

Download data is not yet available.

Article Details

How to Cite
Benitez-Prada, J. E., Plascencia Mora , H., Aguilera Gómez , E., Méndez Hernández , J. M., & Reveles Arredondo , J. F. (2022). A review of self-assembly focused on the macroscopic scale. Ingenio Magno, 13(2), 7 - 18. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2589
Section
Articulos

References

Abelmann, L., Hageman, T. A. G., Löthman, P. A., Mastrangeli, M., & Elwenspoek, M. C. (2020). Three-dimensional self-assembly using dipolar interaction. Science Advances, 6(19), eaba2007. https://doi.org/10.1126/sciadv.aba2007

Bhalla, N., & Bentley, P. J. (2012). Programming Self-Assembling Systems via Physically Encoded Information BT - Morphogenetic Engineering: Toward Programmable Complex Systems (R. Doursat, H. Sayama, & O. Michel (eds.)). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_7

Bhalla, N., Bentley, P. J., Vize, P. D., & Jacob, C. (2014). Staging the Self-Assembly Process: Inspiration from Biological Development. Artificial Life, 20(1), 29–53. https://doi.org/10.1162/ARTL_a_00095

Bhalla, N., Ipparthi, D., Klemp, E., & Dorigo, M. (2014). A Geometrical Approach to the Incompatible Substructure Problem in Parallel Self-Assembly BT - Parallel Problem Solving from Nature – PPSN XIII (T. Bartz-Beielstein, J. Branke, B. Filipič, & J. Smith (eds.); pp. 751–760). Springer International Publishing.

Grünwald, M., Tricard, S., Whitesides, G. M., & Geissler, P. L. (2016). Exploiting non-equilibrium phase separation for self-assembly. Soft Matter, 12(5), 1517–1524. https://doi.org/10.1039/C5SM01922B

Hacohen, A., Hanniel, I., Nikulshin, Y., Wolfus, S., Abu-Horowitz, A., & Bachelet, I. (2015). Meshing complex macro-scale objects into self-assembling bricks. Scientific Reports, 5(1), 12257. https://doi.org/10.1038/srep12257

Hafez, A., Liu, Q., & Santamarina, J. C. (2021). Self-assembly of millimeter-scale magnetic particles in suspension. Soft Matter, 17(29), 6935–6941. https://doi.org/10.1039/D1SM00588J

Hageman, T., Löthman, P., Dirnberger, M., Elwenspoek, M., Manz, A., & Abelmann, L. (2018). Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor. Journal of Applied Physics, 123, 24901. https://doi.org/10.1063/1.5007029

Haghighat, B., Mastrangeli, M., Mermoud, G., Schill, F., & Martinoli, A. (2016). Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control. In Micromachines (Vol. 7, Issue 8). https://doi.org/10.3390/mi7080138

Ipparthi, D., Winslow, A., Sitti, M., Dorigo, M., & Mastrangeli, M. (2017). Yield prediction in parallel homogeneous assembly. Soft Matter, 13(41), 7595–7608. https://doi.org/10.1039/C7SM01189J

Jílek, M, Somr, M., Kulich, M., Zeman, J., & Přeučil, L. (2021). Towards a Passive Self-Assembling Macroscale Multi-Robot System. IEEE Robotics and Automation Letters, 6(4), 7293–7300. https://doi.org/10.1109/LRA.2021.3096748

Jílek, M, Stránská, K., Somr, M., Kulich, M., Zeman, J., & Přeučil, L. (2022). Self-Stabilizing Self-Assembly. IEEE Robotics and Automation Letters, 7(4), 9763–9769. https://doi.org/10.1109/LRA.2022.3191795

Jílek, Martin, Kulich, M., & Preucil, L. (2020). Centimeter-scaled Self-Assembly: A Preliminary Study. https://doi.org/10.5220/0009830104380445
Kimura, K., Okuyama, T., Okano, T., & Suzuki, H. (2018). Selective bonding method for self-assembly of heterogeneous components using patterned surfaces. Sensors and Actuators A: Physical, 279, 306–312. https://doi.org/https://doi.org/10.1016/j.sna.2018.06.001
Liu, Y., Chen, Y., Jiang, X., Ni, Q., Liu, C., Shang, F., Xia, Q., & Zhang, S. (2022). Self-Assembly at a Macroscale Using Aerodynamics. In Applied Sciences (Vol. 12, Issue 15). https://doi.org/10.3390/app12157676

Löthman, P. A., Hageman, T. A. G., Elwenspoek, M. C., Krijnen, G. J. M., Mastrangeli, M., Manz, A., & Abelmann, L. (2020). A Thermodynamic Description of Turbulence as a Source of Stochastic Kinetic Energy for 3D Self-Assembly. Advanced Materials Interfaces, 7(5), 1900963. https://doi.org/https://doi.org/10.1002/admi.201900963

Masumori, A., & Tanaka, H. (2013). Morphological computation on two dimensional self-Assembly system. https://doi.org/10.1145/2503385.2503412

Metzmacher, J., Poty, M., Lumay, G., & Vandewalle, N. (2017). Self-assembly of smart mesoscopic objects. The European Physical Journal E, 40(12), 108. https://doi.org/10.1140/epje/i2017-11599-y

Mitsui, M., Masumori, A., Asakura, R., & Tanaka, H. (2014). Applying Self-Assembly and Self-Reconfigurable Systems for Printer. https://doi.org/10.7551/978-0-262-32621-6-ch086

Nakajima, K., Ngouabeu, A. M. T., Miyashita, S., Göldi, M., Füchslin, R. M., & Pfeifer, R. (2012). Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements. PLOS ONE, 7(6), e37805. https://doi.org/10.1371/journal.pone.0037805

Niu, R., Du, C. X., Esposito, E., Ng, J., Brenner, M. P., McEuen, P. L., & Cohen, I. (2019). Magnetic handshake materials as a scale-invariant platform for programmed self-assembly. Proceedings of the National Academy of Sciences, 116(49), 24402–24407. https://doi.org/10.1073/pnas.1910332116

O’Hara, I., Paulos, J., Davey, J., Eckenstein, N., Doshi, N., Tosun, T., Greco, J., Seo, J., Turpin, M., Kumar, V., & Yim, M. (2014). Self-assembly of a swarm of autonomous boats into floating structures. 2014 IEEE International Conference on Robotics and Automation (ICRA), 1234–1240. https://doi.org/10.1109/ICRA.2014.6907011

Okuyama, T., Hikida, T., Okano, T., & Suzuki, H. (2020). Selective self-assembly of three-component system based on hydrophilic/hydrophobic patterning. Sensors and Actuators A: Physical, 312, 112143. https://doi.org/https://doi.org/10.1016/j.sna.2020.112143

Papadopoulou, A., Laucks, J., & Tibbits, S. (2017). From Self-Assembly to Evolutionary Structures. Architectural