Experimental energy performance evaluation in a commercial freezer using R1234yf at different thermal load levels

Main Article Content

Vicente Pérez García
Darío Méndez Méndez
Óscar Adrián Guzmán Guerrero

Abstract

The use of low GWP refrigerants has been extended around of world due to new environmental policies in the last decade. In this sense, commercial refrigerants that are replacing R134a have a principal characteristic of a low global warming potential (GWP). This paper presents an experimental study of energy performance on a commercial freezer using R1234yf as a replacement to R134a considering three thermal load conditions: without thermal load, medium load thermal load, and full thermal load. Results showed that the use of R1234yf promotes a reduction in the internal temperature on the freezer which is 2.3% lowest cold R134a, while the steady thermal time gets with R134a is lower than R1234yf in 11.1%, 11.7%, and 4.4% respectively for each thermal load level.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pérez García, V., Méndez Méndez, D., & Guzmán Guerrero, Óscar A. (2021). Experimental energy performance evaluation in a commercial freezer using R1234yf at different thermal load levels. Ingenio Magno, 12(1), 52-65. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2309
Section
Articulos
Author Biographies

Vicente Pérez García

División de ingenierías Campus Irapuato Salamanca, Universidad de Guanajuato, INASE Research Group.

Darío Méndez Méndez

División de ingenierías Campus Irapuato Salamanca, Universidad de Guanajuato, INASE Research Group.

Óscar Adrián Guzmán Guerrero

División de ingenierías Campus Irapuato Salamanca, Universidad de Guanajuato, INASE Research Group.  

References

IIR/IIF, (2017). The impact of the refrigeration sector on climate change. in 35th Note on Refrigeration Technologies, from: https://iifiir.org/en/fridoc/141135

A. Sethi, E. Vera Becerra, and S. Yana Mota, (2016). Low GWP R134a replacements for small refrigeration (plug-in) applications. Int. J. Refrig., 66, 64–72.

A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, and B. Peris, (2014). Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems., Int. J. Refrig., 52, 21–31.

U. N. E. P. (UNEP)., “Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer,” in Further Amendment of the Montreal Protocol, (2016).

J. García Pabon, A. Khosravi, J. M. Belman-Flores, L. Machado, and R. Revellin, (2020). Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches. Int. J. Refrig., 118, 104–113.

S. Jarall, (2012). Study of refrigeration system with HFO-1234yf as a working fluid. Int. J. Refrig., vol. 35, 1668–1677.

J. M. Belman-Flores, V. H. Rangel-Hernández, S. Usón, and C. Rubio-Maya, (2017). Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy, 132, 116–125.

Z. Li, K. Liang, and H. Jiang, (2019). Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system. Appl. Therm. Eng., 153, 646–654.

Claudio Zilio, J. Steven Brown, Giovanni Shiochet, Alberto Cavallini (2011). The refrigerant R1234yf in air conditioning systems. Energy, 36, 6110-6120.

Zhaogang Qi (2015). Performance improvement potentials of R1234yf mobile air conditioning system. Int. J. Refrig., 58, 35-40.

H. Cho, H. Lee, Chasik Park, (2012). Performance characteristics of a drop-in system for a mobile air conditioner using refrigerant R1234yf. Korean J. of air condinioning and refrigeration engineering.24, 823-829.

Cleison Henrique de Paula, Wilian Moreira Duarte, Thiago Torres Martins Rocha, Raphael Nunes de Oliveira, Antônio Augusto Torres Maia, (2020). Optimal design and environmental energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf and R744 as alternatives to replace R134a. Int. J. Refrig., 135, 10-20.

Kyle M. Karber, Omar Abdelaziz, Edward A. Vineyard (2012), Experimental performance of R-1234yf as a drop-in replacement for R-134a in domestic refrigerators, Int. Refrig. Air Cond. Conference, paper 1228.

J. Navarro-Esbrí, J.M. Mendoza-Miranda, A. Mota-Babiloni, A. Barragán-Cervera, J.M. Belman-Flores, (2013), Experimental análisis of R1234yf as a drop-in replacement for R134a in a vapor compression system, Int. J. Refrig. 36, 870-880.

Samuel F. Yana Motta, Elizabeth D. Vera Becerra, Mark W. Spatz, (2010). Analysis of LGWP alternatives for small refrigeration (plugin) applications. Int. Refrig. And Air Cond. Conference, paper 1149.

Zvonimir Jankovic, Jaime Sieres Atienza, José Antonio Martínez Suárez, (2015). Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigeration system, Appl. Therm. Eng. 80, 42-54.

J.M. Belman-Flores, A.P. Rodríguez-Muñoz, C. Gutiérrez Pérez-Reguera, A. Mota-Babiloni, (2017), Experimental study of R1234yf as a drop-in replacement for R134a in a domestic refrigerator, Int. J. Refrig., 81, 1-11.

Juan Manuel García Cisneros, (2018). Diseño, construcción e implementación de un sistema de adquisición de datos para un sistema de refrigeración comercial. Tesis de Licenciatura, Universidad de Guanajuato, Salamanca, Guanajuato, México.

G.A. Toloza-Tabares, V. Pérez-García, D. Méndez-Mendez, J.M. Belman-Flores, M.A. Ferrer-Almaraz, (2018). Análisis de la carga óptima en un sistema de refrigeración comercial usando el R1234yf como reemplazo al R134a, XVII Congreso Nacional de Ingeniería Electromecánica y Sistemas, artículo MEC-E-15.