Influence of geometric conditions on the heat transfer of a multilayer wire-on-tube condenser

Main Article Content

Yonathan Heredia Aricapa
Juan Manuel Belman Flores
Diana Pardo Cely
David Rodríguez Valderrama

Abstract

In this paper, a theoretical simulation of the influence of geometric parameters of a multilayer wire-on-tube condenser by forced convection, on the thermal capacity is presented. The geometric parameters under study are the wire diameter, the number of wires and wire pitch. The simulation was performed for two domestic refrigerators with the same type of condenser, but using the refrigerants R134a and R600a. Different empirical correlations were also analyzed for the convective heat transfer coefficient, thus selecting the one that best adjusted to previous experimental data, in this case the Zhukauskas correlation. According to the results obtained, the number of wires and their diameter are the factors that most affect heat transfer, increasing heat dissipation in the condenser between 4% and 6%. Finally, the wire pitch had a lesser influence on heat transfer.

Downloads

Download data is not yet available.

Article Details

How to Cite
Heredia Aricapa, Y., Belman Flores, J. M., Pardo Cely, D., & Rodríguez Valderrama, D. (2021). Influence of geometric conditions on the heat transfer of a multilayer wire-on-tube condenser. Ingenio Magno, 11(2), 108-117. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2183
Section
Artículos-11-2
Author Biographies

Yonathan Heredia Aricapa

Departamento de Ingeniería Mecánica, División de ingeniería, Campus Irapuato-Salamanca, Universidad de Guanajuato, México.

Juan Manuel Belman Flores

Departamento de Ingeniería Mecánica, División de ingeniería, Campus Irapuato-Salamanca, Universidad de Guanajuato, México.

Diana Pardo Cely

Departamento de Ingeniería Mecánica, División de ingeniería, Campus Irapuato-Salamanca, Universidad de Guanajuato, México.

David Rodríguez Valderrama

Departamento de Ingeniería Mecánica, División de ingeniería, Campus Irapuato-Salamanca, Universidad de Guanajuato, México.

References

Barbosa Jr., J.R., Sigwalt, R.A. (2012). Air-side heat transfer and pressure drop in spiral wire-on-tube condensers. International Journal of Refrigeration, 35, 939-951.

Fand, R. M., & Keswani, K. K. (1972). A continuous correlation equation for heat transfer from cylinders to air in crossflow for Reynolds numbers from 10-2 to 2× 105. International Journal of Heat and Mass Transfer, 15, 559-562.

Gholap, A. K., & Khan, J. A. (2007). Design and multi-objective optimization of heat exchangers for refrigerators. Applied Energy, 84, 1226- 1239.

Gönül, A., Ağra, Ö., Atayılmaz, Ş. Ö., Demir, H., Sevindir, M. K., & Teke, İ. (2020). Experimental and numerical investigation of air-side forced convection on wire-on-tube condensers. International Journal of Thermal Sciences, 151, 106241.

Incropera F.P., DeWitt D.P., Bergman, T.L., Lavine, A. 2002. Fundamentals of heat and mass transfer. John Wiley and Sons, NY.

Jang, D. S., Lee, S. H., Yun, S., & Kim, Y. (2020). Refrigerant charge reduction in R600a domestic refrigerator-freezer by optimizing hot-wall condenser geometry. International Journal of Refrigeration, 117, 295-306.

Lee, T. H., Yun, J. Y., Lee, J. S., Park, J. J., & Lee, K. S. (2001). Determination of airside heat transfer coefficient
on wire-on-tube type heat exchanger. International Journal of Heat and Mass Transfer, 44, 1767-1776.

Manohar, K., & Ramroop, K. (2010). A comparison of correlations for heat transfer from inclined pipes. Int. J.
Eng, 4, 268-278.

Melo, C., & Hermes, C. J. (2009). A heat transfer correlation for natural draft wire-and-tube condensers. International journal of refrigeration, 32, 546-555.

Tosun, T., & Tosun, M. (2020). Heat exchanger optimization of a domestic refrigerator with separate cooling circuits. Applied Thermal Engineering, 168, 114810.

Zhang, Z., Huang, D., Zhao, R., & Leng, Y. (2017). Effect of airflow field optimization around spiral wireon-tube condenser on a frost-free refrigerator performance. Applied Thermal Engineering, 114, 785-79

Zhang, Z., Huang, D., Zhao, R., & Leng, Y. (2017). Effect of airflow field optimization around spiral wireon-tube condenser on a frost-free refrigerator performance. Applied Thermal Engineering, 114, 785-79