(methodology for preliminary estimation of the hydrokinetic “h” darrieus turbine performance curve

Main Article Content

Christian Jair Martínez Urrutia
Nelson José Díaz Gautier
Angie Lizeth Espinosa Sarmiento
Geraldo Lúcio Tiago Filho

Abstract

One of the most used ways today to estimate the efficiency of a kinetic exploitation turbine (wind or hydraulic), is through the analysis of Computational Fluid Dynamics - CFD, which allows studies case with results very close to the real ones; However, determining the performance characteristics through the numerical resolution of the CFD equations entails a high computational cost. To obtain a good preliminary approximation of the power coefficient for Darrieus “H” type hydrokinetic turbines with a lower computational cost, this work proposes an analytical methodology based on the solution of the integral Glauert equation. This methodology allows a priori comparison, the variation in the efficiency of the Darrieus H turbine rotor as a function of the progressive change in its solidity, thus making it possible to discriminate the number of configurations to be tested in subsequent CFD or experimental analyzes, necessary for the more detailed design of this type of turbines.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martínez Urrutia, C. J., Díaz Gautier, N. J., Espinosa Sarmiento, A. L., & Tiago Filho, G. L. (2021). (methodology for preliminary estimation of the hydrokinetic “h” darrieus turbine performance curve. Ingenio Magno, 11(2), 93-107. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2182
Section
Artículos-11-2
Author Biographies

Christian Jair Martínez Urrutia

Grupo de Pesquisa TIES (Tecnologias Integradas e Engenharia Sustentável), IEM – Instituto de Engenharia Mecânica, Universidade Federal de Itajubá, Brasil.

Nelson José Díaz Gautier

Grupo de Pesquisa TIES (Tecnologias Integradas e Engenharia Sustentável), IEM – Instituto de Engenharia Mecânica, Universidade Federal de Itajubá, Brasil.

Angie Lizeth Espinosa Sarmiento

Grupo de Pesquisa TIES (Tecnologias Integradas e Engenharia Sustentável), IEM – Instituto de Engenharia Mecânica, Universidade Federal de Itajubá, Brasil. 

Geraldo Lúcio Tiago Filho

Centro Nacional de Referência em Pequenas Centrais Hidrelétricas – CERPCH, Instituto de Recursos Naturais, Universidade Federal de Itajubá, Brasil.

References

Alterima. (2020). ‘’Flutuante Roda D’Água.’’ https://www.alterima.com. br/solucoes/11/flutuante-roda-dagu

Dominguez, F., Achard, J. L., Zanette, J., & Corre, C. (2016). ‘’Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach.’’ Renewable Energy, 89, 658–670.

Gorle, J. M. R., Chatellier, L., Pons, F., & Ba, M. (2016). ‘’Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study.’’ Journal of Fluids and Structures, 66, 382–402.

Guedes, M. H. (2015). ‘’Transformando Venenos Em Remédios’’ (1st ed.).

Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). ‘’Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review’’. Applied Energy, 86(10), 1823–1835.

Kumar, D., & Sarkar, S. (2016). ‘’A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems.’’ Renewable and Sustainable Energy Reviews, 58, 796–813.

Manwell, J. F., McGowan, J. G., & Roger, A. L. (2010). ‘’Wind Energy Explained. Theory, Design and Application’’ (Wiley (ed.); 2nd ed.).

Nunes, M. M., Brasil Junior, A. C. P., & Oliveira, T. F. (2020). ‘’Systematic review of diffuser-augmented horizontal-axis turbines.’’ Renewable and Sustainable Energy Reviews, 133, 110075.

Patel, V., Eldho, T. I., & Prabhu, S. V.(2017). ‘’Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farmarrangement.’’ International Journal of Marine Energy, 17, 110–135.

Patel, V., Eldho, T. I., & Prabhu, S. V.(2019). ‘’Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower.’’ Renewable Energy, 135,

Rodrigues, A. P. D. E. S. P. (2007). ‘’Parametrização E Simulação Numérica Da Turbina Hidrocinética
– Otimização Via Algoritmos Genéticos Universidade de Brasilia https://repositorio.unb.br/bitstream/10482/2350/1/2007_AnnaPauladeSousaParenteRodrigues. PDF

Rosato, M. A. (2019). ‘’Small Wind Turbines for Electricity and Irrigation’’ (CRC Press (ed.)). Taylor & Francis Group. https://taylorandfrancis.com/

Sheldahl, R. E., & Klimas, P. C. (1981). ‘’Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines’’.

Shiono, M., Suzuki, K., & Kiho, S.(2000). ‘’Experimental study of the characteristics of a Darrieus turbine for tidal power generation.’’ Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 132(3), 38–47.

Talukdar, P. K., Kulkarni, V., & Saha, U. K.(2018).’’ Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation.’’ Renewable Energy, 127, 158–167.

Thönnißen, F., Marnett, M., Roidl, B., & Schröder, W. (2016). ‘’A numerical analysis to evaluate Betz’s Law for vertical axis wind turbines.’’ Journal of Physics: Conference Series, Conference.

Tong, W. (2010). ‘’Wind Power Generation and Wind Turbine Design’’ (U. Kollmorgen Corp. (ed.)). WIT Press.

Vermaak, H. J., Kusakana, K., & Koko, S. P. (2014). ‘’Status of micro-hydrokinetic river technology in rural applications: A review of literature.’’ Renewable and Sustainable Energy Reviews, 29, 625–633

Most read articles by the same author(s)