Application of computational fluid dynamics (CFD ) to the study of venturi-type geometries for hydrodynamic cavitation production

Main Article Content

Sergio Torres
Diego Figueredo
Carlos Ramírez

Abstract

Cavitation is a hydrodynamic effect, represented in the release of high amounts of energy, the product of the abrupt depressurization of a fluid mass and causing highly interesting and beneficial phenomena in various fields of engineering, due to the multiple physical and chemical properties it presents. Taking into account the above, this research studied the effects that the different geometric (diameters, angles and lengths) and physical (pressure, speed and number of cavitation) parameters could have on the attainment of cavitation. This was done by simulating twelve different geometries (performed in AutoCAD) in the commercial software ANSYS Fluent 19.0. Finally, high cavitational activity was obtained when a type III geometry (length of 1 mm and divergent angle of 7.5o) is used under an initial pressure of 10 atmospheres.

Downloads

Download data is not yet available.

Article Details

How to Cite
Torres, S., Figueredo, D., & Ramírez, C. (2020). Application of computational fluid dynamics (CFD ) to the study of venturi-type geometries for hydrodynamic cavitation production. Ingenio Magno, 10(2), 101-110. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1903
Section
Artículos Vol. 10-2
Author Biographies

Sergio Torres

Facultad de Ciencias e Ingeniería, Grupo de Investigación GIMAC, Universidad de Boyacá.

Diego Figueredo

Facultad de Ciencias e Ingeniería, Grupo de Investigación GIMAC, Universidad de Boyacá

Carlos Ramírez

Facultad de Ciencias e Ingeniería, Grupo de Investigación GIMAC, Universidad de Boyacá.

References

Instituto de hidrología, meteorología y estudios ambientales. (2015). Estudio nacional del agua 2014. Bogotá: IDEAM.

Brennen, C. (1995). Cavitation and bubble dynamics. New York: Oxford University Press. https://doi.org/10.1017/CBO9781107338760

Brennen, C. (2005). Fundamentals of multiphase flow. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511807169

Charrière, B., Decaix, J., & Goncalvès, E. (2015). A comparative study of cavitation models in a Venturi flow. European Journal of Mechanics, B/Fluids, 49(PA), 287–297. https://doi.org/10.1016/j.euromechflu.2014.10.003

Kuldeep, & Saharan, V. K. (2016). Computational study of different venturi and orifice type hydrodynamic cavitating devices. Journal of Hydrodynamics, 28(2), 293–305. https://doi.org/10.1016/S1001-6058(16)60631-5

Bashir, T. A., Soni, A. G., Mahulkar, A. V., & Pandit, A. B. (2011). The CFD driven optimisation of a modified venturi for cavitational activity. Canadian Journal of Chemical Engineering, 89(6), 1366–1375. https://doi.org/10.1002/cjce.20500

Yi, C., Lu, Q., Wang, Y., Wang, Y., & Yang, B. (2018). Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrasonics Sonochemistry, 43, 156–165. https://doi.org/10.1016/J.ULTSONCH.2018.01.013

Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599–627. https://doi.org/10.1016/J.CEJ.2018.01.049

Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V. K., & Pandit, A. B. (2016). Hydrodynamic cavitation: An emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Reviews in Chemical Engineering, 33(5), 433–468. https://doi.org/10.1515/revce-2016-0032

Tukimin, A., Zuber, M., & Ahmad, K. A. (2016). CFD analysis of flow through Venturi tube and its discharge coefficient. IOP Conference Series: Materials Science and Engineering, 152(1). https://doi.org/10.1088/1757-899X/152/1/012062

Simpson, A., & Ranade, V. V. (2018). Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chemical Engineering Research and Design, 136, 698–711. https://doi.org/10.1016/j.cherd.2018.06.014

He, N., & Zhao, Z. (2010). Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator. Water Science and Engineering, 3(2), 190–199. https://doi.org/10.3882/j.issn.1674-2370.2010.02.007

Ai, W., & Ding, T. (2010). Orifice plate cavitation mechanism and its influencing factors. Water Science and Engineering, 3(3), 321–330. https://doi.org/10.3882/j.issn.1674-2370.2010.03.008

Nurick, W. H. (1976). Orifice Cavitation and Its Effect on Spray Mixing. Journal of Fluids Engineering, 98(4), 681. https://doi.org/10.1115/1.3448452

Saharan, V. K., Rizwani, M. A., Malani, A. A., & Pandit, A. B. (2013). Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics Sonochemistry, 20(1), 345–353. https://doi.org/10.1016/j.ultsonch.2012.0 8.011

Ferziger, J., & Peric, M. (2002). Computational Methods for Fluid Dynamics. New York: Springer-Verlag. https://doi.org/10.1007/978-3-642-97651- 3_1

Jain, T., Carpenter, J., & Saharan, V. K. (2014). CFD Analysis and Optimization of Circular and Slit Venturi for Cavitational Activity. Journal of Material Science and Mechanical Engineering, 1(1), 28–33

Most read articles by the same author(s)