Evaluation of approximate models for the design of automatic control in open channel irrigation systems

Main Article Content

Juan Sebastián Rincón Merchán
María Fernanda Munar Rodríguez
Gregory Johann Conde Méndez
Mikel Fernando Hurtado Morales Mikel Fernando Hurtado Morales

Abstract

The increase in the population and its dependence on agricultural production has increased exponentially throughout history. For this through land cultivation, agriculture satisfies the demand for food, however, in the process this activity requires millions of liters of water, which are distributed in open-channel irrigation systems. In Colombia, the lack of technological investment and the few studies lead to a lack of structures capable of avoiding and controlling water waste. This problem can be addressed from the automatic control of irrigation systems, which are developed from mathematical models approximately predict water dynamics, such as flow variations, system obstructions, discharges and water level along the channels. For this reason this project aims to evaluate models reported in the literature that have been used in the design of automatic control for irrigation channels, through a proposed channel of three sections, selecting the one that best suits the dynamics of SWMM software to apply it to a case study, from which it is determined that the adjustment of some approximate models is more appropriate than others, and that it is possible to continue to expand the research and development of models that are more precisely approaching the dynamics of water, in order to implement automatic control design strategies in irrigation systems to open channel in Colombia.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rincón Merchán, J. S., Munar Rodríguez, M. F., Conde Méndez, G. J., & Mikel Fernando Hurtado Morales, M. F. H. M. (2020). Evaluation of approximate models for the design of automatic control in open channel irrigation systems. Ingenio Magno, 10(2), 84-92. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1901
Section
Artículos Vol. 10-2
Author Biographies

Juan Sebastián Rincón Merchán

FICB, Ingeniería Ambiental, Universidad Central.

María Fernanda Munar Rodríguez

FICB, Ingeniería Ambiental, Universidad Central.

Gregory Johann Conde Méndez

FICB, Maxwell – Ingeniería Electrónica, Universidad Central.

Mikel Fernando Hurtado Morales Mikel Fernando Hurtado Morales

FICB, Maxwell- Ingeniería Electrónica, Universidad Central.

References

Organización de las Naciones Unidas para la Agricultura y la Alimentación FAO, (2005) Agricultura y Dialogo de Culturas. Roma, Italia.

Organización de las Naciones Unidad ONU, (2019). Perspectivas de la Población Mundial 2019, from. https://population.un.org/wpp/.

Instituto de Hidrología Meteorología y Estudios Ambientales IDEAM, (2018). Reporte de avance del Estudio Nacional del Agua 2018, Colombia.

Instituto Geográfico Agustin Codazzi IGAC, (2017). Producción agropecuaria en los grandes Distritos de riego de Colombia ha sido improvisada: IGAC, from. https://igac.gov. co/noticias/produccion-agropecuaria-en-los- grandes-distritos-de-riego-de-colombia-ha-sido-improvisada.

Pedroza, E. y Hinojosa, G. (2014). Manejo y distribución del agua en distritos de riego. Breve introducción didáctica. México.

Chow, V. T., Maidment, D. R. y Mays, L. W. (1994). Applied Hydrology, Ed. McGraw-Hill Interamericana S.A.
Rijo, M. y Arranja, C. (2010). Supervision and Water Depth Automatic Control of an Irrigation Canal, J. Irrig. Drain. Eng., vol. 136, no. 1, pp. 3–10, Jan.

Nguyen, L. D., Prodan, I., Lefevre, L. y Genon- Catalot, D. (2017). Distributed Model Predictive Control of Irrigation Systems using Cooperative Controllers, IFAC-PapersOnLine, vol. 50, no. 1, pp. 6564–6569, Jul.

Horváth, K., Galvis, E., Gómez, M. y Rodellar, J. (2015) New offset-free method for model predictive control of open channels, Control Eng. Pract., vol. 41, pp. 13–25.

Horváth, K. (2013). Model Predictive Control of Resonance Sensitive Irrigation Canals,University Of Catalonia Barcelona Tech.

Bolea, Y., Puig, V., y Grau, A. (2014). “Discussion on Muskingum versus integrator-delay models for control objectives,” J. Appl. Math.

Overloop, P. J., Clemmens, A. J., Strand, R. J., Wagemaker, R. M. J., y Bautista, E. (2010). Real-time implementation of model predictive control on maricopa-stanfield irrigation and drainage District’s WM canal, J. Irrig. Drain. Eng., vol. 136, no. 11, pp. 747–756.

Segovia, P., Rajaoarisoa, L., Nejjari, F., Puig, V. y Duviella, E. (2017). Decentralized control of inland navigation networks with distributaries: application to navigation canals in the north of France, in proceedings of the 2015 American Control Conference (ACC), May.

Clemmens, A. J., Kacerek, T. F., Grawitz, B., y Schuurmans, W. (1998). Test Cases for Canal Control Algorithms, J. Irrig. Drain. Eng., vol. 124, February, pp. 23–30, 1998.

Clemmens, A. J., Tian, X., Overloop, P. J., y Litrico, X. (2017). Integrator delay zero model for design of upstream water-level controllers,”J. Irrig. Drain. Eng., vol. 143, no. 3.

Schuurmans, J. (1997). Control of Water Levels in Open-Channels, Delft University of Technology.

Litrico, X., Malaterre, P. O., Baume, J. P., Vion, P.-I. y Ribot-Bruno, J. (2007). Automatic tuning of PI controllers for an irrigation canal pool, J. Irrig. Drain. Eng., vol. 133, no. 1, pp. 27–37.

Overloop, P. J., Miltenburg, I. J., Bombois, X., Clemmens, A. J., Strand, R. J., Giesen, N. C. y Hut, R. (2010) Identification of resonance waves in open water channels, Control Eng. Pract., vol. 18, no. 8, pp. 863–872.

Litrico, X. y Fromion, V. (2004). Simplified Modeling of Irrigation Canals for Controller Design, J. Irrig. Drain. Eng., vol. Volume 130, no. Issue 5, p. Pages 373-383.

Gerald T McCarthy. (1939) The unit hydrograph and flood routing. U.S. Engineer Office, Providence, R.I..

Chow, V. T. (1959). Open-Channel Hydraulics. New York: McGraw·Hill Book Company INC.

Gill, M. A. (1978). Flood routing by the Muskingum method,J. Hydrol., vol. 36, no. 3–4, pp. 353–363, Feb. 1978.

Das, A. (2004). Parameter Estimation for Muskingum Models, J. Irrig. Drain. Eng., vol. 130, no. 2, pp. 140–147, Apr.

Cunge, J. A. (1969). On The Subject Of A Flood Propagation Computation Method (Musklngum Method), J. Hydraul. Res., vol. 7, no. 2, pp. 205–230, Jan.

Conde, G. J., Quijano, N. y Ocampo, C. (2019), Modeling and Control of Interacting Irrigation Channel, IEEE 4th Colombian Conference on Automatic Control. Colombia, Medellin.

United States Environmental Protection Agency EPA. (s,f). Storm Water Management Model (SWMM). from. https://www.epa.gov/water-research/storm-water-management-model-swmm#tab-3.