Optimización en la elaboración de redes neuronales artifciales adaptativas usando una metodología de algoritmo de poda
Main Article Content
Abstract
Downloads
Article Details
DECLARATION OF ORGINIALITY OF SUBMITTED ARTICLE
With this document, I/We certify that the article submitted for possible publication in the institutional journal INGENIO MAGNO of the Research Center Alberto Magno CIIAM of the University Santo Tomás, Tunja campus, is entirely of my(our) own writing, and is a product of my(our) direct intellectual contribution to knowledge.
All data and references to completed publications are duly identified with their respective bibliographical entries and in the citations thus highlighted. If any adjustment or correction is needed, I(we) will contact the journal authorities in advance.
Due to that stated above, I(we) declare that the entirety of the submitted material is in accordance with applicable laws regarding intellectual and industrial property, and therefore, I(we) hold myself(ourselves) responsible for any complaint related to it.
If the submitted article is published, I(we) declare that I(we) fully relinquish publishing rights of the article to the University Santo Tomás, Tunja campus. As remuneration for this relinquishment of rights, I(we) declare my(our) agreement to receive two (2) copies of the edition of the journal in which my(our) article appears.
References
Ascombe, T. (1973). Graphs and Statistical Analysis. The American Statistician, 27(1), 17-21.
Asuncion, A. y Newman, D. (2007). UCI Machine Learning Repository. Recuperado de http://www.ics.uci.edu/~mlearn/MLRepository.html
Bentz, D., Peltz, M. y Winpigler, J. (2009). Early-age properties of cement-based materials: II. Influence of water-to-cement ratio. ASCE Journal of Materials in Civil Engineering, 21(9), 512-517.
Bhadeshia, H., Dimitriu, R., Forsik, S., Pak, J. y Ryu, J. (2009). Performance of neural networks in materials science. Materials Science and Technology, 25(4), 504-510.
Castellano, G., Fanelli, A. y Pelillo, P. (1997). An iterative pruning algorithm for feedforward neural networks. IEEE Transactions on Neural
Networks, 8(3), 519-531.
Chaouachi, A., Kamel, R., Ichikawa, R., Hayashi, H. y Nagasaka, K.
(2009). Neural network ensemble-based solar power generation short-term forecasting. International Journal of Engineering and Mathematical Sciences, 3(6), 40-46.
Constantiner, D. y Dackzo, J. (2002). Not all applications are created equal: Selecting the appropriate SCC performance targets. First North American Conference on the Design and Use of Self Consolidating Concrete. Chicago.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Sigma and Systems, 2(4), 303-314.
Díaz, W., Will, A. y González, S. (2011). Un método para estimación de calidad de datos en redes neuronales y aplicación a problemas de hormigón de alto performance. Mecánica Computacional, 30(43), 3381-3381.
Doukim, C., Dargham, J. y Chekima, A. (2010). Finding the number of hidden neurons for a MLP neural networks using coarse to fne search technique. Recuperado de https://www.semanticscholar.org/paper/Finding-the-number-of-hidden-neurons-for-an-MLP-neDoukim-Dargham/c442c3ac2589e1f048d-
5d5827556763c5b7fbdfa
González, S., Guerrero, Z., Delvasto, A. y Will, A. (2012). Red neuronal Artifcial para estimar la resistencia a compresión, en concretos fbroreforzados con acero. Ciencia e Ingeniería Neogranadina, 22(1), 19-41.
González, S. (2014). Diseño de mezclas de concreto reforzado con fbras metálicas y de polipropileno, usando inteligencia artifcial (tesis doctoral). Cali: Universidad del Valle.
González, S., Guerrero, Z., Delvasto, A. y Will, A. (2014). Estimación del Índice de Tenacidad Flexural I5 en concretos fbroreforzados, usando redes neuronales artifciales. Revista Colombiana de Materiales, 5, 24-29.
Hashemi-Nejad, M. y Fekri, H. (2009). Shortterm wind speed prediction using adaptive neural networks. Europe Wind Energy Conference and Exhibition 2009. Marsella, Francia.
Hornik, K., Stinchcombe, M. y White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366.
Huang, R. y Shurong, T. (2009). Evolving product unit neural networks with particle swarm optimization. Proceedings of the 2009 Fifth International Conference on Image and Graphics.
Jinchuan, K. y Xinzhe, L. (2008). Empirical analysis of optimal hidden neurons in neural networks modeling for stock prediction. Proceedings of the Pacifc-Asia Workshop on Computational Intelligence and Industrial Applications, 40, 828-832.
Kiranyaz, S., Ince, T., Yildirim, A. y Gabbouj, M. (2009). Evolutionary artifcial neural networks by multi-dimensional particle swarm optimization. Neural Networks, 22(10), 1448-1462.
Koza, J. y Rice, J. (1991). Genetic generation of both the weigths and arquitecture for neural networks. Proceedings of IEEE, IJCNN, Seattle
(WA), pp. 397-404.
Kwok, T. y Yeung, D. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks, 8(3), 630-645.
MacKay, D. (1992). A practical bayesian framework for backpropagation networks. Neural Computation, 4(3), 448-472.
Martínez, E. (2005). Errores frecuentes en la interpretación del coefciente de determinación lineal. Anuario Jurídico y Económico Escurialense, 38, 315-332.
Panchal, G., Ganatra, A., Kosta, Y. y Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and
hidden layers. International Journal of Computer Theory and Engineering, 3(2), 332-337.
Prechelt, L. (1998). Automatic early stopping using cross validation: quantifying the criteria. Neural Networks, 11(4), 761-767.
Reed, R. (1993). Pruning algorithms-a survey. Transations of Neural Networks, 4(5), 740-747.
Sánchez, D. (2000). Tecnología del Concreto y Mortero. Bogotá: Bhandar.
Sharma, S. y Chandra, P. (2010a). Constructive neural networks: A review. International Journal of Engineering Science and Technology, 2(12), 7847-7855.
Sharma, S. y Chandra, P. (2010b). An adaptive slope sigmoidal function cascading neural networks algorithm. Proceedings of the IEEE, Third International Conference on Emerging Trends in Engineering and Technology.
Sharma, S. y Chandra, P. (2010c). An adaptive slope basic dynamic node creation algorithm for single hidden layer neural networks. Proceedings of the IEEE, International Conference on Computational Intelligence and Communication Systems.
Subirats, J., Franco, L. y Jerez, J. (2012). C-MANTEC: A novel constructive neural network algorithm incorporating competition between neurons. Neural Networks, 26, 130-140.
Tompkins, C. (1992). Using and interpreting linear regression and correlation analyses: Some cautions and considerations. Clinical
Aphasiology Paper, 21, 35-46.
Wei, G. (2008). Evolutionary neural network based on new ant colony algorithm. International Symposium on Computational Intelligence and Design IEEE.
Yao, X. y Liu, Y. (1997). A new revolutionary system for evolving artificial neural networks. Transactions on Neural Networks, 8(3), 694-713.
Yeh, I. (1998). Modeling of strength of high-performance concrete using artifcial neural networks. Cement and Concrete Research, 28(12), 1797-1808.
Yeh, I. (2007). Modeling slump flow of concrete using second-order regressions and artifcial neural networks. Cement and Concrete Composites, 29(6), 474-480.
Yuan, H., Xiong, F. y Huai, X. (2003). A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy. Computers and Electronics in Agriculture, 40(1-3), 57-64.