Design of a monitoring system for the acquisition of noninvasive electromyographic signals in upper extremities

Main Article Content

Angela Maria Gonzalez Amarillo
Adriana Granados Comba
Javier Antonio Ballesteros Ricaurte

Abstract

The techniques and technologies to collect, analyze, represent and store medical data in a reliable way have evolved rapidly. One of these methodologies is the clinical surface electromyography, which allows recording and analyzing bioelectric activity useful for the diagnosis of congenital or acquired neuromuscular disorders, as well as determining the exact anatomic location of the problem and intensity. The electromyographic signal is a technique used for various applications in different areas such as neurology, rehabilitation, orthopedics, among others. This article presents the design of the stages of the development and implementation for the simulation of surface electromyographic (EMG) signals, by means of a non-invasive method, which provides the electrical activity of the muscles with great objectivity and promptness which are checked in upper limb muscles. For the implementation of the circuits, components of easy acquisition are used, contributing to the technological development of the country.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gonzalez Amarillo, A. M., Granados Comba, A., & Ballesteros Ricaurte, J. A. (2018). Design of a monitoring system for the acquisition of noninvasive electromyographic signals in upper extremities. Ingenio Magno, 8(2), 44 - 55. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1349
Section
Artículos Vol. 8-2
Author Biographies

Angela Maria Gonzalez Amarillo, Universidad Nacional Abierta y a Distancia UNAD

Escuela de Ciencias Básicas tecnologia e Ingenieria - Lider zonal de escuela

Adriana Granados Comba, Universidad Nacional Abierta y a Distancia UNAD

Escuela de Ciencias Básicas tecnologia e Ingenieria - Docente Ciencias Básicas

Javier Antonio Ballesteros Ricaurte, Universidad Pedagógica y Tecnológica de Colombia - UPTC

Escuela de Ingeniería de Sistemas y Computación - Docente Ingenieria de Sistemas

References

Laplante, Phillip A. (2005). Comprehensive dictionary of electrical engineering. Boca Raton, FL: Taylor & Francis.

Reaz, M., & Hussain, F., (2006). Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biological Procedures.

Adel, R., & Luykxr. (1991). Electroterapia de frecuencia baja y media. Netherland: Editorial Alfa.

Akhtar, A., Aghasadeghi, N., Hargrove, L., & Bretl, T. (2017). Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses. Journal of Elec-tromyography and Kinesiology, 35, 86–94. https://doi.org/10.1016/j.jelekin.2017.06.001

Boschetti., G. (2002). ¿Que es la electroestimulación? Teoría, práctica y metodología del entrenamiento., Barcelona: Editoria Paidotribo.

Clancy, E. A., Martinez-luna, C., Wartenberg, M., Dai, C., & Farrell, T. R. (2017). Two de-grees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes q. Journal of Electromyography and Kinesiology, 34, 24–36. https://doi.org/10.1016/j. jelekin.2017.03.004

Hoz, E. D. La, Franklin, J., Marques, D. A., & Gallego, O. (2015). Utilidad del Biofeedback Perineal en las disfunciones del piso pélvico.

Khushaba, R. N., Al-timemy, A., Kodagoda, S., & Nazarpour, K. (2016). Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Systems With Applications, 61, 154–161. https://doi.org/10.1016/j.eswa.2016.05.031

Kim, B., Kim, L., Kim, Y., & Yoo, S. K. (2017). ScienceDirect Cross-association analysis of EEG and EMG signals according to movement intention state. Cognitive Systems Re-search, 44, 1–9. https://doi.org/10.1016/j. cogsys.2017.02.001

Malanda, A., Rodriguez-falces, J., Porta, S., & Navallas, J. (2017).

Biomedical Signal Processing and Control Motor unit profile: A new way to describe the scanning-EMG po-tential, 34, 64–73. https://doi.org/10.1016/j.bspc.2016.12.020

Moreno, O., González, J. & Ballesteros, J. (2015). Transformación de archivos DICOM a formatos XML, JPEG y PNG. Revista Científica, 21, 71-80. Doi: 10.14483/udistrital.jour. RC.2015. 21.a7

Verikas, A., Parker, J., Bacauskiene, M., & Olsson, M. C. (2017). Exploring relations be-tween EMG and biomechanical data recorded during a golf swing, 88, 109–117. https://doi.org/10.1016/j.eswa.2017.06.041

Villamizar, J., & Sc, P. M. (2012). Brazo robótico controlado por electromiografía.

Laplante, Phillip A. (2005). Comprehensive dictionary of electrical engineering. Boca Raton, FL: Taylor & Francis.

Reaz, M., & Hussain, F., (2006). Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biological Procedures.