Evaluation of the effects of varying water flow on the levels of Ammonium, Nitrate and Ph of a prototype aquaponic system

Main Article Content

Luis Alfredo Rodriguez Umaña

Abstract

This paper presents the results of the project “Design and implementation of an automated prototype for recirculation and filtration systems of water via the technique for detection of nitrate and ammonium combinations”, the prototype was built to scale in the laboratory, its general goal was to evaluate the effectiveness of the technique for detection of Nitrate and Ammonium combinations in the organic material of the system and its impact on the water quality, to this end we detected the level of Nitrate and Ammonium combinations present in the fish tank, we varied the water flow of the pump, allowing us to establish its relationship with the pH levels, temperature and ammonium and nitrate combinations in the fish tank, promoting operating conditions more appropriate to the process of filtering organic material and preserving the water quality of the system without needing to readjust it.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rodriguez Umaña, L. A. (2016). Evaluation of the effects of varying water flow on the levels of Ammonium, Nitrate and Ph of a prototype aquaponic system. Ingenio Magno, 7(2), 126-138. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1199
Section
Artículos Vol. 7-2
Author Biography

Luis Alfredo Rodriguez Umaña, Universidad de los Llanos

Docente de planta del programa de ingeniería electrónica.Director centro de proyeccion social de la facultad de ciencias básicas e ingeniería.

References

Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. y Verstraeteet, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4), 1-14. Doi: 10.1016/j.aquaculture.2007.05.006.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) (2012). The state of World Fisheries and Aquaculture. Roma.

Kioussis, D. R., Wheaton, F. W. y Kofinas, P. (2000). Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels. Aquacult Engineering, 23, 315-332. Doi: 10.1016/S0144-8609(00)00058-3

Menegaki, A. N., Hanley, N. y Tsagarakis, K. P. (2007). The social acceptability and valuation of recycled water in Crete; A study of consumers and farmers attitudes”. Ecological Economics, 52, 7-18. Doi: 10.1016/j. ecolecon.2007.01.008

Meng, R., He, L. S., Xi, B. D., Hu, X. y Li, Y. Y. (2009). Experimental study on purifying aquaculture wastewater between bacillus and nitrifying bacteria. Environmental Science & Technology, 32(11), 28-31.

Oca, J. y Masaló, I. (2013). Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features. Aquacultural Engineering, 52, 6572. Doi: 10.1016/j.aquaeng.2012.09.002

Pagand, P., Blancheton, J. P. y Claude, C. (2000). A model for predicting the quantities of dissolved inorganic nitrogen released in effluents from a sea bass (Dicentrarchus labrax) recirculating water system. Aquacultural Engineering, 22, 137-153. Doi: 10.1016/ S0144-8609(00)00037-6

Piedrahíta, R. H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226(1-4), 35-44. Doi: 10.1016/S0044-8486(03)00465-4.

Rakocy, J. (2003). Initial economic analysis of aquaponic systems. European Aquaculture Society, 33, 58-64.

Randall, D. J. y Tsui, T. K. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17-23. Doi: 10.1016/ S0025-326X(02)00227-8

Ridha, M. T. y Cruz, E. M. (2001). Effect of biofilter media on water quality and biological performance of the Nile Tilapia Oreochromis niloticus L. reared in a simple recirculating system. Aquacultural Engineering, 24, 57–166. Doi: 10.1016/S0144-8609(01)00060-7

Rijin, J. V. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49-56. Doi: 0.1016/j.aquaeng.2012.11.010

Romero, R., Muriel, J. L, García, I. y Muñoz de la Peña, D. (2012). Research on automatic irrigation control: State of the art and recent results. Agricultural Water Management, 114, 59-66. Doi: 10.1016/j. agwat.2012.06.026.

Schneider, O., Sereti, V., Eding, E. H. y Verreth, J. A. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32, 379-401. Doi: 10.1016/j.aquaeng.2004.09.001

Teichert, C. y Oddington, D. R. (2010). Treatment of harvest discharge from intensive shrimp ponds by settling”. Aquacultural Engineering, 19, 147-161. Doi: 10.1016/S0144-8609(98)00047-8.

Tyson, R. V., Treadwell, D. D. y Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponics. HortTechnology, 21(1), 6-13.

Valente, L. M., Linares, F., Villanueva, J. L., Silva, J.M., Espe, M., Escórcio, C., Pires, M. A., Saavedra, M. J., Borges, P., Medale, F., Álvarez, B. y Peleteiro, J. B. (2011). Dietary protein source or energy levels have no major impact on growth performance, nutrient utilisation or flesh fatty acids composition of marketsized. Aquaculture, 318, 128-137. Doi: 10.1016/j. aquaculture.2011.05.026