Development of a filtration system using sintered materials as a means of filtration

Main Article Content

Íngrid G. Ramírez-P
Efren de jesus de Jesús Muñoz-Prieto

Abstract

In the department of Boyacá there are rural areas which do not benefit from drinkable water, therefore the goal of the study is to create a filtering bed for water quality, with the aim of being used in these communities and reducing consumption and exposure to contaminants, in order to do so we used materials such as zeolite, bentonite, kaolonite and activated carbon which were submitted to a drying process at 110°C for six hours, afterwards they were used for the creation of four treatments of different proportions using as treatment one, 75% zeolite, 20% Bentonite,4.2% kaolonite and 0.8% activated carbon, for treatment two, 80% zeolite, 15% bentonite, 4.5% kaolonite and 0.5% activated carbon, for treatment three, 85% zeolite, 10% bentonite, 4.3% kaolin and 0.7% activated carbon and for treatment four, 85% zeolite, 10% bentonite, 4.6% kaolonite and 0.4% activated carbon. For the creation of this filtering bed capable of reducing contaminants we performed sifting procedures using meshes of 100, 270 and 400, applying a phase without a mill and another phase with a mill using the sifting method to obtain the filtering bed up to a temperature of 1000°C. These procedures were evaluated with the Porosity Analysis by SEM technique, the obtained results showed a decrease in the porosity of the sintered material, which were subjected to previously performed procedures. The analyses of the treatments were performed randomly; in the phase without a mill we obtained a pore size of 6, 23 and 3.56, microns for treatments 2 and 3, respectively, in the phase with a mill 2.390 microns for treatment 2.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ramírez-P, Íngrid G., & Muñoz-Prieto, E. de jesus de J. (2016). Development of a filtration system using sintered materials as a means of filtration. Ingenio Magno, 7(2), 43-55. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1193
Section
Artículos Vol. 7-2
Author Biographies

Íngrid G. Ramírez-P, Universidad Pedagógica y Tecnológica de Colombia

Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias, Grupo de Investigación en Desarrollo y Nuevos Materiales (DANUM).

Efren de jesus de Jesús Muñoz-Prieto, Universidad Pedagógica y Tecnológica de Colombia

Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias, Grupo de Investigación en Desarrollo y Nuevos Materiales (DANUM).

References

Alcántara Valladares. J. R (2005). Diseño practico de un molino de bolas (tesis de pregrado). Ciudad de México: Instituto Politécnico Nacional.

Chen, F., Ma, L., Shen, Q. y Zhang, L. (2011). Pore structure control of starch processed silicon nitride porous ceramics with near-zero shrinkage. Materials Letters, 65, 1410-1412.

Choo, K. H., Lee, H. y Choi, S. J. (2005). Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. Journal of Membrane Science, 267(1-2), 18-26.

Churchman, G., Askary, M., Peter, P., Wright, M., Raven, M. y Self, P. (2002). Geotechnical properties indicating environmental uses for an unusual Australian bentonite. Applied Clay Science, 20, 199-209.

Ćurković, L., Cerjan-Stefanović, Š y Filipan T. (1997). Metal ion exchange by natural and modified zeolites. Water Research, 31(6), 1379-1382.

Dabwan, A. H., Imai, D., Kaneco, S., Senmatsu, I., Nakahama, K., Katsumata, H. Suzuki, T. y Ohta, K. (2008). Water purification with sintered porous materials fabricated at 400°C from sea bottom sediments. Journal of Environmental Sciences, 20(2), 172-176.

De Sa, C., Benboudjema, F., Thiery, M y Sicard, J. (2008). Analysis of microcracking induced by differential drying shrinkage. Cement and Concrete Composites,30(10), 947-956.

Deffeyes, K. S. (1959). Zeolites in sedimentary rocks. International Journal of Sediment Research, 29(4), 602-609.

Dong, Y., Chen, S., Zhang, X., Yang, J., Liu, X. y Meng, G. (2006). Fabrication and characterization of low cost tubular mineral-based ceramic membranes for microfiltration from natural zeolite. Journal of Membrane Science, 281(1-2), 592-599.

Hajjaji, M., Kacim, S. y Boulmane, M. (2002) Mineralogy and firing characteristics of a clay from the valley of Ourika (Morocco). Applied Clay Science., 21, 203-212.

Hay, R. L. (1996). Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America (JournalSeek), 85, 1-122.

Li, Z., Jiang, W. T., Jean, J. S., Hong, H., Liao, L. y Lv, G. (2011). Combination of hydrous iron oxide precipitation with zeolite filtration to remove arsenic from contaminated water. Desalination, 280(1-3), 203-207.

Mecha, C. A. y Pillay, V. L. (2014). Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. Journal of Membrane Science, 458, 149-156.

Mopoung, S., Sriprang, N. y Namahoot, J. (2014). Sintered filter materials with controlled porosity for water purification prepared from mixtures with optimal ratio of zeolite, bentonite, kaolinite, and charcoal. Applied Clay Science, 88-89, 123-128.

Mwabi, J., Adeyemo, F., Mahlangu, T., Mamba, B., Brouckaert, B., Swartz, C., Offringa, G., Mpenyana- Monyatsi, L. y Momba. M (2011). Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa. Physics and Chemistry of the Earth, 36, 1120-1128.

Park, M. y Komarneni, S. (1997). Occlusion of KNO3 and NH4NO3 in natural zeolites. Zeolites, 18(2-3), 171-175.

Qin, S., Ma, F., Huang, P. y Yang, J. (2009). Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin. Desalination, 245(1-3), 183-193.

Rasmussen, S. T., Ngaji-Okumu, W., Boenke, K. y O’Brien, W. (1997). Optimum particle size distribution for reduced sintering shrinkage of a dental porcelain. Dental Materials, 13(1), 43-50.

Rivera, M. L. y Piña, M. (2003). A pilot study for arsenic removal from water by adsorption in natural zeolite adsorption in presence of iron and manganese. Ciudad de México: Instituto Mexicano de Tecnología del Agua.

Rivera, M. L. y Piña, M. (2005). Tratamiento de agua para remoción de arsénico mediante adsorción sobre zeolita natural acondicionada. Ciudad de México: Instituto Mexicano de Tecnología del Agua.

Roccaro, R., Barone, C. Mancini, G. y Vagliasindi, F. G. (2007). Removal of manganese from water supplies intended for human consumption: a case study. Desalination, 210(1-3), 205-214.

Salem, A. Afshin, A. y Behsaz. H. (2012). Removal of lead by using Raschig rings manufactured with mixture of cement kiln dust, zeolite and bentonite. Journal of Hazardous Materials, 223-224, 13-23.

Shackerlford, J. (2005). Introducción a la ciencia de materiales para ingenieros. Madrid: Prentice Hall.

Shafiquzzaman, M., Azam, M. S., Nakajima, J. y Bari, Q. H. (2011). Investigation of arsenic removal performance by a simple iron removal ceramic filter in rural households of Bangladesh. Desalination, 265(1-3), 60-66.

Verginia, P., Rivera, M. L., Pila, M., Avilés, M. y Pérez, S. (2011). Evaluación de diversos materiales para la remoción de arsenico. Ciudad de México: Instituto Mexicano de Tecnología del Agua.

Watson, B. M. y Hornburg, C. D. (1989). Low-energy membrane nanofiltration for removal of color, organics and hardness from drinking water supplies. Desalination, 72(1-2), 11-22.

Zhang, Z., Qi, C., Wang, S. Liu, J. y Cao. J, H. (2011). A study on preparation of cordierite gradient pores porous ceramics from rectorite. Solid State Sciences, 13, 929-933.