Fuzzy control for a half bridge bidirectional dcdc converter

Main Article Content

Luz María Moreno-Aguilar
Édgar Édgar Peralta-Sánchez
María del Rocío Morales-Salgado

Abstract

This article presents the design, simulation, and implementation of a control applied to a half bridge bidirectional direct current to direct current converter. The control strategy is based on fuzzy logic. The control modifies the values of the interrupter’s work cycle controlled by pulse-width modulation in order to assure a specific value of voltage leaving the converter. The control was experimentally validated in a power converter operating both for function in step-down mode and for function in step-up mode. The simulation was carried out in Matlab/Simulink. A test bench was built based on a 2 kW DC-DC converter and the control algorithm was implemented with Labview and compactRIO.

Downloads

Download data is not yet available.

Article Details

How to Cite
Moreno-Aguilar, L. M., Édgar Peralta-Sánchez, Édgar, & Morales-Salgado, M. del R. (2016). Fuzzy control for a half bridge bidirectional dcdc converter. Ingenio Magno, 7(1), 116-132. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1170
Section
Artículos Vol. 7-1

References

Elmas, C., Deperlioglu, O. y Sayan, H. H. (2009). Adaptive fuzzy logic controller for DC–DC converters. Expert Systems with Applications, 36(2), 1540-1548.

Castellanos M., P. (2003). Programación del control para un convertidor CD/CD en un DSP (Reporte interno).

Govindaraj, T. y Rasila, R. (2010). Development of fuzzy logic controller for dc–dc buck converters. International Journal of Engineering Techsci, 2(2), 192-198.

Kessal, A., Rahmani, L., Mostefai, M. y Gaubert, J. (2012). Power factor correction based on fuzzy logic controller with fixed switching frequency. Electronics & Electrical Engineering, 118.

Khaburi, D. A. y Rostami, H. (2011). Controlling the both dc boost and ac output voltages of a z-source inverter using neural network controller with minimization of voltage stress across devices. Iranian Journal of Electrical & Electronic Engineer-ing, 7(1).

Mohan, N., Tore, U. y Robbins W. P. (2009). Electrónica de potencia: convertidores, aplicaciones y diseño (3.ª ed.). Ciudad de México: McGraw-Hill.

Muruganandam, M., Thangaraju, I. y Madheswaran, M. (2014). Simulation and implementation of an embedded hybrid fuzzy trained artificial neural network controller for different DC Motor. Rasipuram: Muthayammal Engineering College.

National Instruments (2014). NI LabVIEW for CompactRIO: Developer’s Guide. Recuperado de https:// www.ni.com/compactriodevguide/

Rashid, M. H. (2010). Power electronics handbook: devices, circuits and applications (3.a ed.). Burlington: Elsevier.

Rameshkumar, A. y Arumugam, S. (2009). Design and simulation of fuzzy controlled quasi resonant buck converter. ARPN Journal of Engineering and Applied Sciences, 4(5), 91-100

So, W. C., Tse, C. K. y Lee, Y. S. (1996). Development of a fuzzy logic controller for DC/DC converters: design, computer simulation, and experimental evaluation. IEEE Transactions on Power Electronics, 11(1), 24-32.