Determination of degree of metallization of pellets from an iron mixture, reduced in a Linder furnace

Main Article Content

Juan Santos Cuevas-Soto
Alfonso López-Díaz
Luis Fernando Lozano-Gómez
Francisco J Rondón C

Abstract

This work corresponds to a study on pellet reduction formed from mixtures of iron ore from Topaipí (Department of Cundinamarca, Colombia) with two iron ores coming from Cerro San Isidro and Cerro Altamira (State of Bolivar, Venezuela). This ferrous mineral benefaction technique has been used for several decades in the steel industry in order to recover fine materials, generated in the processes previous to their use; which in actuality mixtures are made between low grade and high grade metal are created. These iron ore metals, mixtures, and the components to be added to make the pellets were categorized by their chemical, physical, and mineralogical components through X-ray diffraction and chemical analysis. After drying, the pellets were reduced in the laboratory in a Linder furnace at 850 and 1000°C during 160 minutes. The purpose was to evaluate the degree of metallization and basicity indices of the direct reduced iron (DRI). This was done in order to partially substitute the scraps in the electric arc furnace and consequently, make ferrous products. The analysis showed that the mixtures increase the iron content and better the basicity indices. A metallization degree of 81.20 and 95.1% were obtained. This demonstrates that the ratio of mineral used in the mixture, taking into account the chemical composition of the minerals and the contents added in the production of the mixture, is appropriate and the DRI obtained meet the expected specifications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cuevas-Soto, J. S., López-Díaz, A., Lozano-Gómez, L. F., & Rondón C, F. J. (2016). Determination of degree of metallization of pellets from an iron mixture, reduced in a Linder furnace. Ingenio Magno, 7(1), 46-61. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1166
Section
Artículos Vol. 7-1

References

Africano, H. (2005). Obtención de pellet a partir de mineral de hierro empleando diferentes aglomerantes y carbón como agente reductor en procesos de reducción directa. Tunja: Universidad Pedagógica y Tecnológica de Colombia.
Alcázar, J. (2011). Influencia del contenido de sílice del mineral de hierro en la resistencia al impacto del material briqueteado en caliente. En Memorias de las IX Jornadas de Investigación 2011, UNEXPO. Puerto Ordaz: C.V.G. Ferrominera Orinoco.
Barbis, R. (2000). Reducción de minerales de hierro (conferencia). Tunja: Universidad Pedagógica y Tecnológica de Colombia.
Cores, A., Babich, A., Muñiz, M. y Mocho, J. (2010). The Influence of Different Iron Ores Mixtures Composition on the Quality of Sinter. Recuperado de https://www.researchgate.net/publication/250161720_ The_Influence_of_Different_Iron_Ores_Mixtures_ Composition_on_the_Quality_of_Sinter
Dwarapudi, S., Ghosh, T., Shankar, A., Tathavadakar, V., Bhattacharjee, D. y Venugopal, R. (2011). Effect of pellet basicity and MgO content on the quality and microstructure of hematite pellets. International Journal of Mineral Processing, 99, 43-53.
Forero P., A. y Díaz B. , S. (2007). Beneficio de una magnetita para producción de pellets utilizados en procesos de reducción directa. Scientia et Technica, 36, 793-796.
Formoso, A. (2000). Estudio de la granulación de la mezcla de minerales de hierro en el proceso de sinterización. I parte. Granulación. Revista Metalurgia, 36, 244-253.
Grupo de Siderurgia UPTC (2003). Diseño y construcción de un horno rotatorio a nivel de planta piloto para la obtención de prerreducidos a partir de minerales de hierro nacionales, en Acerías Paz del Río S.A. Tunja: Autor.
Gustafsson, G. (2013). Determination of bulk properties and fracture data for iron ore pellets using instrumented confined compression experiments. Powder Technology, 241, 19-27.
Macías, V., Camporredondo, J. y Soria, M. (2009). Análisis termodinámico del proceso de endurecimiento de pelet de mineral de hierro. Prospectiva, 7(1), 59-66.
Melgarejo, J. C. (2010). Técnicas de caracterización mineral y su aplicación en exploración y explotación minera. Boletín de la Sociedad Geológica Mexicana, 62(1), 1-23.
Nellros, F. (2011). Automated image analysis of ironore pellet structure using optical microscopy. Minerals Engineering, 24, 1525-1531.
Przemyslaw, F. y Mróz, J. (2011). Ability for SelfPelletization of Iron Ores and Magnetite Concentrates. Journal of Iron and Steel Research, International, 18(6), 1-7.
Wu, S., Wang, Q, Bian, M., Zhu, J. y Long, F. (2011). Influence of Iron Ore Characteristics on FeO Formation During Sintering. Journal of Iron and Steel Research, International, 18(5), 5-10.
Vásquez, J. (2010). El mineral de hierro en Venezuela. Caracas: Ministerio de Poder Popular para la Educación.
Yang, S., Zhou, M., Jiang, T., Wang, Y. y Xue, X. (2015). Effect of basicity on sintering behavior of lowtitanium vanadium−titanium magnetite. Transactions of Nonferrous Metals Society of China, 25, 2087-2094.
Zhu, D., Chun, T., Pan, J. y Zhang, J. (2013). Influence of basicity and MgO content on metallurgical performances of Brazilian specularite pellets. International Journal of Mineral Processing, 125, 51-60.