Biological filter design, construction and development for Chromium contaminated water (case study)

Main Article Content

Uriel Fernando Carreño Sayago

Abstract

Effective technology is required to remove contaminants present in water, which has caused the development of removal techniques over the past decades. Currently, absorption is believed to be the most simple and effective method for wastewater treatment, in which its success is dependent on the development of efficient absorbents. In the following case study, a crushed biological filter, containing Eichhornia crassipes and zeolites as supporting materials, was designed, developed, and put into practice. Eichhornia crassipes is an abundant aquatic plant in wetlands, lakes and river, causing it to create many environmental and ecological issues. Zeolites are also abundant and easy to obtain. The effectiveness of this filter in chromium removal was proven in this case study, making it a probable wastewater treatment technique due to its low cost and easy assembly.

Downloads

Download data is not yet available.

Article Details

How to Cite
Carreño Sayago, U. F. (2016). Biological filter design, construction and development for Chromium contaminated water (case study). Ingenio Magno, 7(1), 22-30. Retrieved from http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1164
Section
Artículos Vol. 7-1

References

Atehortúa, E. y Gartner, C. (2003). Preliminary studies of Eichhornia crassipes dry biomass for lead and chromium removal from waters. Revista Colombiana de Materiales, 5.
Asgari, G., Ramavandi, B., Rasuli, L. y Ahmadi, M. (2013). Adsorption from aqueous solution using a surfactant-modified Iranian zeolite: characterization, optimization, and kinetic approach. Desalination and Water Treatment, 51, 31-33.
Balasubramaniana, K., Arunachalam, K., Dasb, A. K. y Arunachalam, A. (2012). Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. Under different trophic conditions in wetlands of eastern Himalayan foothills. Ecological Engineering, 44, 111-122.
Carreño, U. y Perdomo, F. (2015). Diseño, construcción y puesta en marcha de un sistema de tratamiento biológico con (Eichhornia crassipes) para la remediación de las aguas residuales procedentes de las curtiembres ubicadas en la cuenca alta del río Bogotá. X Convención Internacional sobre Medio Ambiente y Desarrollo. La Habana: Ministerio de Ciencia, Tecnología y Medio Ambiente de Cuba.
Chisutia, W. y Mmari, O. (2014). Adsorption of Congo Red Dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies. Energy Procedia, 50, 862-869.

Covarrubias, C., García, R., Yánez, J. y Arriagada, R. (2008). Preparation of CPB-modified FAU zeolite for the removal of tannery wastewater contaminants. Journal of Porous Materials, 15(4), 491-498.

Epstein, P. (2012). Weeds bring disease to the east African waterways. The Lancet, 351(9102).

Gómez, H. y Pinzón, G. (2012). Análisis de la mitigación del impacto ambiental en el lago del parque La Florida, por fitorremediación usando buchón de agua (tesis de especialización). Bogotá: Universidad Militar Nueva Granada.

Gopal, B. (1987). Aquatic plant studies 1. Water Hyacinth. Nueva York: Elsevier.

Lv, G., Li, Z., Jiang, W-T., Fenske, N. y Demarco, N. (2014). Removal of Cr (VI) from water using Fe(II)modified natural zeolite. Chemical Engineering Research and Design, 92(2), 384-390. Doi: 10.1016/j.
cherd.2013.08.003
Higuera, O., Escalante, H. y Laverde, D. (2005). Reducción del cromo contenido en efluentes líquidos de la industria del cuero, mediante un proceso adsorción – desorción con algas marinas. Scientia et Technica, 11(29).
Higuera, O., Arroyave, J. y Flórez, L. (2008). Diseño de un biofiltro para reducir el índice de contaminación por cromo generado en las industrias del curtido de cueros. Revista DYNA, 160, 107-119.
Leyva, R., Azuara, P., Díaz, F. y Guerrero, C. (2008). Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 330(1), 35-41.

Lin, S., Guoxing, W., Zhongyuan, N., Diannan, L. y Zheng, L. (2012). Long-root Eichhornia crassipes as a biodegradable adsorbent for aqueous As(III) and As(V). Chemical Engineering Journal, 183, 365-371.

Tan, L., Zhu, D., Zhou, W., Mi, W., Ma, L. y He, W. (2008). Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper. Bioresource Technology, 99(10), 4460-4466

Kasturiarachchi, J. C. (2014). Removal of nutrients (N and P) and heavy metals (Fe, Al, Mn and Ni) from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes) under different nutritional conditions. Recuperado de http://dl.lib.mrt. ac.lk/handle/123/10239
Kumar, V., Motohide, M. y Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. Journal of Hazardous Materials, 160(1), 148-153.
Martínez, C., Torres, M. y García, R. (2013). Evaluación de la cinética de adsorción de Zn2+ y Cd2+ a partir de soluciones unitarias y binarias por raíces de Eichhornia crassipes y Typha latifolia. Avances en Ciencias e Ingeniería, 4(2), 1-14.
Mejía, Z., Valenzuela, S. y Aguayo, S. (2010). Adsorción de arsénico en zeolita natural pretratada con óxidos de magnesio. Revista Internacional de Contaminación Ambiental, 25(4), 217-227.
Pitcher, S. K., Slade, R. C. T. y Ward, N. I. (2004). Heavy metal removal from motorway stormwater using zeolites. The Science of the Total Environment, 1(334335), 161-166.
Poddar, K., Mandal, L. y Banerjee, G. C. (1991). Studies on water hyacinth (Eichhornia crassipes) – chemical composition of the plant and water from different. Ciencia, Tecnología y Futuro, 5(2).
Qiu, W. y Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145(3), 483-488.
Velarde, H., Zavaleta, A. y Aguilar, Q. (2013). Estudio de la absorción del ion cromo VI con jacinto de agua (Echhornia crassipes). II Encuentro de Investigadores. Trujillo: Universidad de Trujillo.
Wang, S. y Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11-24.
Zhou, W., Zhu, D., Lagdon, A., Li, L., Liao, S. y Tan, L. (2011). The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresource Technology, 100, 5366-5369.
Li, X., Liu, S., Na, Z. y Liu, Z. (2013). Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecological Engineering, 60, 160-166.
Xia, H. y Ma, X. (2006). Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresource Technology, 97, 1050-1054.