Una aproximación a la evaluación de subproductos de la desinfección en aguas para consumo humano en municipalidades de Colombia

Contenido principal del artículo

Juan Pablo González G.
Jhon Huertas
José L. Sepulveda

Resumen

Este estudio se realizo a partir de información del monitoreo a las concentraciones de trihalometanos Totales en diferentes puntos de la planta de tratamiento de agua potable y/o de la red de distribución de tres principales acueductos de Colombia, (Bogotá, Medellín y Bucaramanga), algunos datos fueron suministrados por las empresas prestadoras del servicio y otros fueron tomados en campo con un electrodo de medición directa; esto con el fin de investigar la interacción entre diferentes parámetros como pH, turbiedad, cloro residual y temperatura del agua en las redes de acueducto y la formación de subproductos de la desinfección denominados Trihalometanos (THM's). Se observaron importantes correlaciones entre cofactores y el aumento en las concentraciones de THM's en las redes de acueducto; esto permitirá mejorar las técnicas de monitoreo empleadas actualmente para el monitoreo de estos compuestos.

Detalles del artículo

Sección
Articulos Ingenio Magno No. 2
Biografía del autor/a

Juan Pablo González G., Universidad Santo Tomás seccional Tunja

Magister en Ingeniería Civil, Especialista en Ingeniería Ambiental, Facultad de Ingeniería Civil. Universidad Santo Tomás Tunja, Grupo de Investigaciones Ambiental y Civil en Ingeniería ACI - Tunja - Boyacá Colombia.

Citas

Benoit Rieger; Genevie`ve Hubert; Patrick Biette; Aline Berthelin. (1997). Not only training but also exposure to chlorinated compounds generates a response to oxidative stimuli in swimmers. Toxicology and Industrial Health.

Cantor ; Richard J. Bull; Linda Birnbaum; Kenneth P; Joan B. Rose; Byron E. Butterworth; Rex Pegram and Juoko Tuomisto. (1987). Water Chlorination: Essential Process or Cancer Hazard?. Health Risk Assessment Department, Battelle Pacific Northwest Laboratories Richland, Washington 99352 ealth Effects Research Laborator, U.S. Environmental Protection Agency, Research Triangle Park North Carolina 27711 National CancerInstitute Bethesda.

Camper F Codony; J Morato, J Mas. (1999). Role of discontinuous chlorination on microbial production by drinking water biofilms. Department of Civil Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3J 2X4.

D. M. Freedman, K. P. Cantor, N. L. Lee, L.-S. Chen, H.-H. Lei, C. E. Ruhl and S. S. Wang. (1997). Bladder cancer and drinking water: a opulation-based case-control study in Washington County, Maryland (United States).

Cancer Causes and Control Volume 8, Number 5.

Fletcher and Marshall, 1982. Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Institute for Thermodynamics and Thermal Engineering, University of Stuttgart Institute for Technical Thermodynamics, German Aerospace Centre, D-7000 Stuttgart, Germany.

Hallam; Rizzo Luigi. (2001). Drinking Water Disinfection: Microbial Risk and Disinfection by-Products. Department of Civil Engineering. Salerno University Italy.

Karen C.W. Chan, Donald S. Mavinic, and John A. Brereton. (2002).Trihalomethane formation in drinking water and production within a polyvinyl chloride pipe environment. Environmental Engineering Group, Department of Civil Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

LS Clesceri, AE Greenberg, AD Eaton - March. (1998). Standard Methods for examinations of water and waste water 20th edition.

L. Hureikia, J.P. Crouéa and B. Legube. (1994). Chlorination studies of free and combined amino acids. Laboratoire Chimie de l'Eau et des Nuisances URA CNRS 1468, École Supérieure d'Ingénieurs de Poitiers, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France.

Le Chevallier; Costerton; MacDo- nald.(1990). Comparison of the Efficacy of Free Residual Chlorine and Monochloramine against Biofilms in Model and Full Scale Cooling Towers. Department of Biology, Faculty of Science, Istanbul University, Turkey.

Leidholdt, Ralph. (1982). Chlorine - 'Special Agent' for Disinfecting Water. OPF, Vol. 8 Iss. 9, September 1982, Page Range 1, 6-7, 3 Pages.

Lorraine C; Backer; Manoranjan VS, Campbell TJ. (2000). Water Well Sustainability in Ontario. Prepared for the Ontario Ministry of the Environment Sustainable Water Well Initiative Final Report.

Mallevialle; Chan, DS Mavinic, JA. (1990). Trihalomethane formation in drinking water and production within a polyvinyl chloride pipe environment. Journal of Environmental Engineering and Science.

Match, J. E., & Birch, J. W. (1987). Guide to successful thesis and dissertation (4th ed). New York: Marcel Dekker.

Mc Geehin; KP Cantor, CF Lynch, M Hildesheim. (1993). Drinking Water Source and Chlorination Byproducts I. Risk of Bladder Cancer, Epidemiology January 1998, Volume 9 Number 1.

Rodríguez Manuel J., Sérodes Jean-B., Levallois Patrick, and Proulx François. (2003). Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. Laval University Canada.

Olin; Filser; Jo; Maxwell; McKone. (1998). Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Department of Environmental Health Sciences, University of Michigan, 109 Observatory Drive, Ann Arbor, MI 48109-2029, USA.

Pomes, Michael L.; Green, W. Reed; Thurman, E. Michael; Orem, William H; Lerch, Harry E. (1999). DBP Formation Potential of Aquatic Humic Substances. Journal AWWA, Vol. 91 Iss. 3, March 1999, Page Range 103-115, 13 Pages.

Stocker, KJ, Statham, J., Howard, WR and Proudlock, RJ. (1997). Risk assessment case study-Chloroform and related substances. Food and Chemical Toxicology, Volume 38, Pages S91-S9.

Volk C., Roche P., Romer C., Paillard H. and Joret JC. (1997). Ozone enhanced removal of natural organic matter from drinking water sources. University of Colorado at Boulder, Boulder, CO 80309, U.S.A.

WD King; LD Marrett. (1996). Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada).

Williams David T; Benoit M. Frank; Guy L. Lebel. (1995). Trends in levels of disinfection by-products. Environmetrics, Volume 9, Issue 5, pages 555-563.

Wilkes; S Haddad; GC Tardif R. (1996). Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. Departement des sciences biologiques, TOXEN, Universit du Qu bec Montr al, Montr al, Canada.