Incidencia de las estrategias metacognitivas de los docentes de matemáticas en el proceso de comprensión, al solucionar problemas de fracción como parte- todo

Contenido principal del artículo

Dorys Jeannette Morales Jaime

Resumen

Las matemáticas presentan una gran variedad de problemas, desde la enseñanza y desde el aprendizaje, esta investigación muestra los resultados de un estudio realizado con docentes que enseñan matemáticas en el sector oficial urbano y rural de Boyacá, Colombia, respecto a cómo abordan la resolución de problemas de fracción parte - todo, en contextos continuo, discreto y como razón. La investigación desarrollada fue de tipo cualitativa-explotaría, ya que las estrategias metacognitivas presentan aspectos concretos en los procesos de resolución de problemas en los docentes que enseñan matemáticas y que han sido poco analizados desde el quehacer docente; para el cálculo de la muestra se hizo un muestreo probabilístico Bietápico MAS-Cuadrado (Muestreo Aleatorio Simple para la primera y segunda etapa del muestreo), obteniéndose una muestra de 67 profesores en ejercicio del sector oficial en el departamento de Boyacá, como técnicas de investigación se realizó un taller (resolución de problemas)  de 12 preguntas,  se hizo una entrevista con preguntas semiestructuradas y el diario de campo. Se realizó un análisis textual a través del software SPADT (sistema de análisis de datos textuales), que permitió conocer los diferentes tópicos que pretendía la investigación. Los resultados muestran que el 33% de los docentes son lingüísticos, 10% son semánticos y 18% son esquemáticos y el 39%, no dieron información a esta pregunta, respecto a cómo trabajan la fracción parte todo se concluye que en contexto continuo el 32 % fueron eficaces, en contexto discreto el 65% acertaron en sus respuestas. En conclusión, se puede afirmar, que los docentes urbanos con formación disciplinar, se centran en el uso de algoritmos numéricos (operaciones), los cuales están ligados a procesos de ejercitación, siempre quieren dar la respuesta rápidamente, mientras que los docentes rurales quienes tienen formación en básica primaria son más analíticos y ligados a procesos de razonamiento matemático.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Morales Jaime, D. J. (2018). Incidencia de las estrategias metacognitivas de los docentes de matemáticas en el proceso de comprensión, al solucionar problemas de fracción como parte- todo. Ingenio Magno, 9(1), 123-135. Recuperado a partir de http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1649
Sección
Artículos Vol. 9-1
Biografía del autor/a

Dorys Jeannette Morales Jaime, Universidad Pedagógica y Tecnológica de Colombia.

Estudiante Doctorado en Ciencias de la Educación Rudecolombia cade Tunja.

Citas

BARA SORO, (2001). Estrategias Metacognitivas y de Aprendizaje. Estudio Empìrico sobre el efecto de la aplicaciòn de un programa metacognitivo y el dominio de las estrategias de aprendizaje en estudiantes de E:S:O:, B.U.P y Universidad. Tesis de doctorado. U.Complutense de Madrid. ISBN: 84-669-2331-4.

BENZÉCRY, (1982). Análisis de datos cualitativos. Programa de Computación.

Delgado, (1998). Las habilidades generales matemáticas. En Hernández (Ed.), Cuestiones de Didáctica de la Matemática. Rosario: Homo Sapiens.

Foures, C. (2011). Reflexión Docente y Metacognición, Revista Instituto de Estudios de Educación. Universidad del Norte, Comahue, Provincia de Río Negro, Argentina. No. 14, julio-diciembre, 2011.

Glaser, B., Strauss, A. (1967). The discovery of grounded theory: strategies for qualitative research. New York: Aldine Publishing Company.

Iriarte P. (2011) Estrategias Metacognitivas en la Resolución de Problemas Matemáticos, en Estudiantes de 5º. de Básica Primaria. Tesis. Universidad De Sucre. I.E. Normal Superior de Sincelejo. Colombia.

MEN. (2002, 2011). Estatuto de Profesionalización Docente. Bogotá, Colombia.

MEN. (2013). Evaluación de Competencias. Bogotá, Colombia

Miles & Huberman, (1994). Qualitative data analysis: An expanded sourcebook (2a ed.). Thousand Oaks, CA: Sage.

Morse, J.M. (1994) Designing funded qualitative research. In Denzin, N.K. and Lincoln, Y.S., Eds., Handbook of Qualitative Inquiry, Sage Publications Ltd.

Obando, G. (2003). La Enseñanza de los Números Racionales a Partir de la Relación.

Parte-Todo. Revista Ema, 8(2), 157-182.

Poblette & Dìaz, (2017). Competencias Profesionales del profesor de matemàticas. Universidad de los Lagos. Osorno, Chile. Revista Números. Vol. 53, marzo 2003. (pp.3-43) Chile

Rodríguez Q., E. (2005). Metacognición, Resolución de Problemas y Enseñanza de las Matemáticas. Una Propuesta Integradora desde el Enfoque Antropológico. Universidad Complutense De Madrid. Tesis Doctoral. Madrid.