Planificación de trayectorias para quadrotor de bajo costo mediante software educativo

Contenido principal del artículo

Edgar Andrés Gutiérrez Cáceres

Resumen

Este artículo se da a conocer como documento de consulta para estudiantes de pregrado y posgrado en el área de ingeniería, que requieran realizar una implementación de control rápida y eficaz de un robot aéreo. Se tiene como objetivo dar a conocer el diseño e implementación de un planificador de trayectorias para un quadrotor de bajo costo utilizado como objeto de investigación. Para ello, se realiza una conceptualización del análisis matemático correspondiente a los multirotores tipo quadrotor, la estrategia de control, el cálculo del planificador de trayectorias punto a punto con un perfil de velocidad trapezoidal construido en Software Educativo, y posteriormente, el análisis de los resultados obtenidos en la práctica mediante una validación experimental del mismo en la plataforma Ar. drone2 de la empresa Parrot vs a la simulación realizada. Dichos resultados permitirán determinar la efectividad del planificador de trayectorias según las coordenadas calculadas XYZ. No se interactuó con la orientación del robot aéreo, es decir, no hay control sobre la rotación con respecto al eje Z.

Detalles del artículo

Sección
Artículos Vol. 8-2
Biografía del autor/a

Edgar Andrés Gutiérrez Cáceres, Universidad Santo Tomás seccional Tunja

Ingeniero Electrónico. Especialista en Instrumentación Electrónica, Docente Facultad de Ingeniería Electrónica Universidad Santo Tomás, seccional Tunja.Investigador Grupo Vital Signal & Control, Facultad de Ingeniería Electrónica, Universidad Santo Tomás, seccional Tunja, Colombia

Citas

Abdessameud, A., & Janabi-sharifi, F. (2015). Automatica Image-based tracking control of VTOL unmanned aerial vehicles. Automatica, 53, 111–119. https://doi.or-g/10.1016/j.automatica.2014.12.032

Alpen, M., Frick, K., & Horn, J. (2013). An Autonomous Indoor UAV with a Real-Time On-Board Orthogonal SLAM. IFAC Proceedings Volumes (Vol. 46). IFAC. https://doi. org/10.3182/20130626-3-AU-2035.00016

Amato, E. D., Francesco, G. Di, Notaro, I., Tar¬taglione, G., Mattei, M., Francesco, G. Di, Notaro, I. (2015). ScienceDirect Nonlinear Dy¬namic Inversion and Neural Networks for a Tilt Tri-Rotor UAV Nonlinear Dynamic Inversion and Neural Networks for a Tilt Tri-Rotor UAV Non¬linear Dynamic Dynamic Inversion and Neural Neural Networks for a a Tilt Tilt Nonlinear Inve. IFAC-PapersOnLine, 48(9), 162–167. https://doi.org/10.1016/j.ifacol.2015.08.077

Antonelli, G., Baizid, K., Caccavale, F., Giglio, G., & Pierri, F. (2014). CAVIS: a Control software Architecture for cooperative multi-unmanned aerial VehIcle-manipulator Systems. IFAC Pro¬ceedings Volumes (Vol. 47). IFAC. https://doi. org/10.3182/20140824-6-ZA-1003.02366

Ayanian, N., Rus, D., & Kumar, V. (2012). Decentralized Multirobot Control in Partially Known Environments with Dynamic Task Reassignment. IFAC Proceedings Volumes (Vol. 45). IFAC. https://doi. org/10.3182/20120914-2-US-4030.00029

Behera, L. (2014). International Federation of Automatic Control 3 rd International Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2014, (March), 13–15. https://doi. org/10.3182/20140313-3-IN-3024.90001

Bouktir, Y., Haddad, M., & Chettibi, T. (2008). Trajectory planning for a quadrotor helicopter, 1258–1263.

Brown, T. B., Cheng, R., Sirault, X. R. R., Run¬grat, T., Murray, K. D., Trtilek, M., Borevitz, J. O. (2014). TraitCapture: Genomic and en¬vironment modelling of plant phenomic data Current Opinion in Plant Biology, 18(1), 73–79. https://doi.org/10.1016/j.pbi.2014.02.002

Caccavale, F., Giglio, G., Muscio, G., & Pie¬rri, F. (2014). Adaptive control for UAVs equipped with a robotic arm. IFAC Proceedings Volumes (Vol. 47). IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.00790

Drone, A. R., & Quadrotor, D. (2016). Scien¬ceDirect with with. IFAC-PapersOnLine, 49(6), 236–241. https://doi.org/10.1016/j.ifacol.2016.07.183

Duan, T., Chapman, S. C., Guo, Y., & Zheng, B. (2017). Field Crops Research Dynamic moni¬toring of NDVI in wheat agronomy and bree¬ding trials using an unmanned aerial vehicle. Field Crops Research, 210(June), 71–80. https://doi.org/10.1016/j.fcr.2017.05.025

François, P. B., David, C., & Jemmapes, D. (2011). The Navigation and Control technology inside the AR . Drone micro UAV. IFAC Proceedings Volumes (Vol. 44). IFAC. https://doi.org/10.3182/20110828-6-IT-1002.02327

Freeman, P. K., & Freeland, R. S. (2014). Politics & technology : U . S . polices restricting unmanned aerial systems in agriculture, 49, 302–311. https://doi.org/10.1016/j.foodpol.2014.09.008

Gabrlik, P., Gabrlik, P., & Gabrlik, P. (2015). ScienceDirect The Use of Direct Georeferen-cing in Aerial The Use in The Photogrammetry Use of of Direct Direct Georeferencing Georeferencing in Aerial Aerial with Micro UAV Photogrammetry with UAV Photogrammetry with. IFAC-PapersOnLine, 48(4), 380–385. https://doi.org/10.1016/j.ifacol.2015.07.064

Garrido, M., Paraforos, D. S., Reiser, D., Arellano, M. V., Griepentrog, H. W., & Valero, C. (2015). 3D maize plant reconstruction based on georeferenced overlapping lidar point clouds. Remote Sensing, 7(12), 17077– 17096. https://doi.org/10.3390/rs71215870

Gohardani, O., Chapartegui, M., & Elizetxea, C. (2014). Progress in Aerospace Sciences Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles : A review of current and expected applications in aerospace sciences. Progress in Aerospace Sciences, 70, 42–68. https://doi.org/10.1016/j.paerosci.2014.05.002

GPSPRO. (n.d.). SIA "Infinitas" - Parrot Droni - Parrot AR.Drone 2.0 orange + Gloves and 16GB USB Stick Parrot Dro¬ni. Retrieved October 11, 2017, from http://www.gpspro.lv/products/lv/326/4662/sort/1/filter/0_0_0_0/Parrot-AR.Drone-2.0-orange- --Gloves-and-16GB-USB-Stick-Parrot-Droni.html

Guenard, A., & Ciarletta, L. (2012). The AE¬TOURNOS project : Using a flock of UAVs as a Cyber Physical System and platform for application-driven research, 10(EmSens), 939–945. https://doi.org/10.1016/j.procs.2012.06.127

Guerrero, J. S., Contreras, A. F., Hernández, J. I., & Neira, L. A. (2015). Instrumentation of an Array of Ultrasonic Sensors and Data Processing for Unmanned Aerial Vehicle ( UAV ) for Teaching the Application of the Kalman Filter. Procedia - Procedia Computer Science, 75(Vare), 375–380. https://doi.org/10.1016/j.procs.2015.12.260

Hehn, M., & Andrea, R. D. (2011). Quadrocopter Trajectory Generation and Control. IFAC Proceedings Volumes (Vol. 44). IFAC. https://doi.org/10.3182/20110828-6-IT-1002.03178

Jiang, B., Bishop, A. N., Anderson, B. D. O., & Drake, S. P. (2014). Path Planning for Minimizing Detection. IFAC Procee¬dings Volumes (Vol. 47). IFAC. https://doi. org/10.3182/20140824-6-ZA-1003.00634

Kapitonov, A. A. (2014). Geometric path following control of a rigid body based on the stabilization of sets. IFAC Proceedings Volumes (Vol. 47). IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.02502

Khamseh, H. B., Pimenta, L. C. A., & Tôrres, L. A. B. (2014). Decentralized Coordination of Constrained Fixed-wing Unmanned Aerial Vehicles : Circular Orbits. IFAC Proceedings Volumes (Vol. 47). IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.01643

King, S., Lai, S., Wang, F., Lan, M., & Chen, B. M. (2015). Mechatronics Systems design and implementation with jerk-optimized trajectory generation for UAV calligraphy. Mecha-tronics, 30, 65–75. https://doi.org/10.1016/j.mechatronics.2015.06.006

Li, Q., Li, D., Wu, Q., Tang, L., & Huo, Y. (2013). Computers in Industry Autonomous navigation and environment modeling for MAVs in 3-D enclosed industrial environments. Computers in Industry, 64(9), 1161–1177. https://doi.org/10.1016/j.compind.2013.06.010

Lippiello, V., & Ruggiero, F. (2012). Cartesian Impedance Control of a UAV with a Robotic Arm. IFAC Proceedings Volumes (Vol. 45). IFAC. https://doi.org/10.3182/20120905-3-HR-2030.00158

Luo, Y., Guan, T., Wei, B., Pan, H., & Yu, J. (2015). Neurocomputing Fast terrain mapping from low altitude digital imagery. Neurocomputing, 156, 105–116. https://doi.or-g/10.1016/j.neucom.2014.12.079

Matouk, D., & Gherouat, O. (2016). Quadrotor Position and Attitude Control via Backstepping Approach, 73–79.

Modeling, Estimation, and Control of Quadrotor. (2012), (August). Mu, A., Parra-vega, V., & Anand, S. (2015). ScienceDirect Control Control Control Control Control. IFAC-PapersOnLine, 48(19), 118–123. https://doi.org/10.1016/j.ifacol.2015.12.020

Olivares, V., Cordova, F., Sepúlveda, J. M., & Derpich, I. (2015). Information Technology and Quantitative Management ( ITQM 2015 ) MODELING INTERNAL LOGISTICS BY USING DRONES ON THE STAGE OF ASSEMBLY OF PRODUCTS. Procedia - Procedia Computer Science, 55(Itqm), 1240–1249. https://doi.org/10.1016/j.procs.2015.07.132

Önder, M., Eresen, A., & Imamog, N. (2012). Expert Systems with Applications Autono-mous quadrotor flight with vision-based obstacle avoidance in virtual environment, 39, 894–905. https://doi.org/10.1016/j.eswa.2011.07.087

Palunko, I., & Fierro, R. (2011). Adaptive Control of a Quadrotor with Dynamic Changes in the Center of Gravity. IFAC Proceedings Volumes (Vol. 44). IFAC. https://doi.org/10.3182/20110828-6-IT-1002.02564

Pounds, P., Mahony, R., & Corke, P. (2010). Control Engineering Practice Modelling and control of a large quadrotor robot. Control Engineering Practice, 18(7), 691–699. https://doi.org/10.1016/j.conengprac.2010.02.008

Pretorius, A., & Boje, E. (2014). De¬sign and Modelling of a Quadrotor Helicopter with Variable Pitch Rotors for Aggressive Manoeuvres. IFAC Proceedings Volumes (Vol. 47). IFAC. https://doi. org/10.3182/20140824-6-ZA-1003.01586

Raffler, T., Wang, J., & Holzapfel, F. (2013). Path Generation and Control for Unmanned Multirotor Vehicles Using Nonlinear Dynamic Inversion and Pseudo Control Hedging. IFAC Proceedings Volumes (Vol. 46). IFAC. https://doi.org/10.3182/20130902-5-DE-2040.00132

Riccardi, F., Farooq, M., Formentin, S., Lovera, M., Elettronica, D., Bioingegneria, I., Leonardo, P. (2013). Control of variable-pitch quadrotors. IFAC Proceedings Volumes (Vol. 46). IFAC. https://doi. org/10.3182/20130902-5-DE-2040.00143

Rocchi, A. B. C. A. P. C. (2008). Hierarchical and Hybrid Model Predictive Control of Quadcopter Air Vehicles. IFAC Proceedings Volumes (Vol. 42). IFAC. https://doi.org/10.3182/20090916-3-ES-3003.00004

Rossi, C., & Savino, S. (2013). Robot trajectory planning by assigning positions and tan-gential velocities. Robotics and Computer-Integrated Manufacturing, 29(1), 139–156. https://doi.org/10.1016/j.rcim.2012.04.003

Rudolph, M. K. J. (2013). Quadrotor tracking control based on a moving frame. IFAC Pro-ceedings Volumes (Vol. 46). IFAC. https://doi.org/10.3182/20130904-3-FR-2041.00142

Saska, M., Kasl, Z., & P, L. (2014). Motion planning and control of formations of micro aerial vehicles, 1228–1233. https://doi. org/10.3182/20140824-6-ZA-1003.02295

Sumano, E., Castro, R., & Salazar, R. L. S. (2013). Synchronized Flight Formation of Quadrotors. IFAC Proceedings Volumes (Vol. 46). IFAC. https://doi.org/10.3182/20131120-3-FR-4045.00042

Vázquez-Arellano, M., Griepentrog, H. W., Reiser, D., & Paraforos, D. S. (2016). 3-D ima-ging systems for agricultural applications—a review. Sensors (Switzerland), 16(5). https://doi.org/10.3390/s16050618

Vignoni, A., Garelli, F., & Garc, S. (2012). UAV reference conditioning for formation control via set invariance and sliding modes, 10–15. https://doi.org/10.3182/20120914-2-US-4030.00060

Wang, J., Wang, J., Iurii, A., Krasnov, J., & Krasnov, A. J. (2015). ScienceDirect Geome-tric Geometric Geometric path path following following moving frame moving moving fra-me frame control control control in in in a a a. IFAC-PapersOnLine, 48(11), 150–155. ht-tps://doi.org/10.1016/j.ifacol.2015.09.175

Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle ( UAV ). Biosystems Engineering, 108(2), 174–190. https://doi.org/10.1016/j.biosystemseng.2010.11.010

Xiong, J. J., & Zheng, E. H. (2014). Position and attitude tracking control for a quadrotor UAV. ISA Transactions, 53(3), 725–731. ht¬tps://doi.org/10.1016/j.isatra.2014.01.004

Yu, H., Sharma, R., Beard, R. W., & Taylor, C. N. (2013). Observability-based local path planning and obstacle avoidance using bearing-only measurements. Robotics and Au-tonomous Systems, 61(12), 1392–1405. https://doi.org/10.1016/j.robot.2013.07.013

Yu, Z., Jing, C., & Lincheng, S. (2013). Real-time trajectory planning for UCAV air-to-surfa-ce attack using inverse dynamics optimization method and receding horizon control. Chinese Journal of Aeronautics, 26(4), 1038–1056. https://doi.org/10.1016/j.cja.2013.04.040

Zhang, Z., Zhang, S., Xie, P., & Ma, O. (2014). Bioinspired 4D Trajectory Genera¬tion for a UAS Rapid Point-to-Point Movement, 11, 72–81. https://doi.org/10.1016/ S1672-6529(14)60021-4

Zhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multis-pectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412. https://doi.org/10.1016/j.compag.2016.06.019