Análisis del fenómeno de la corrosión en aceros de tipo estructural desde el punto de vista de su uso en la industria de la ingeniería civil

##plugins.themes.bootstrap3.article.main##

José Leonardo Sánchez Mondragón

Resumo

crosta do nosso planeta e, quando transformado por meio de uma liga com carbono, forma o material comumente conhecido como aço. Existem diferentes formas de identificar e classificareste tipo de material em função da sua utilização, seja doméstico, industrial ou para construções civis. Embora o aço de carbono ter sido o maiormente utilizado na engenharia civil, hoje em dia surgiram técnicas de transformação deste material que o convertem e permitem que todas as suas propriedades físicas e mecânicas sejam melhoradas. Nesta pesquisa, foi feita a análise, relacionando os três tipos mais comuns de aço utilizados para o fabricação de estruturas metálicas (aço carbono, aço inoxidável e aço de auto-protecao), referindo-se principalmente aos dois últimos dado o seu grau de utilização tanto na indústria e comércio quanto na engenharia civil e fazendo ênfase no fenómeno da corrosão. Foi determinado como as suas taxas de corrosão, propriedades e características são afetadas, tudo isto tendo em conta a informação obtida através de uma revisão bibliográfica dos processos experimentais, testes e ensaios laboratoriais, para além disto complementada por uma fase experimental básica e desenvolvida à sua própria maneira (metalografia). Através da análise da corrosão entre os diferentes tipos de aço mencionados, observou-se uma diferença notável entre o efeito que causa esta lesão e os fatores que nela predominam; é de vital importância levar em conta este aspecto, uma vez que define a qualidade do material no momento da sua utilização como matéria-prima, especialmente no campo da engenharia, no desenho de estruturas metálicas (especialmente pontes), considerando todos os fatores ambientais - atmosféricos, sociais e económicos que influenciam sua vida útil. A tecnologia avança muito rapidamente e no campo da engenharia civil a forma de desenhar estruturas de aço torna-se cada vez mais simplificada, definitivamente o aço é um material que tem muitas características, entre elas flexibilidade, baixo custo, instalação fácil que funcionam como vantagens sobre outros materiais existentes, tais como o concreto.

##plugins.themes.bootstrap3.article.details##

Como Citar
Sánchez Mondragón, J. L. (2021). Análisis del fenómeno de la corrosión en aceros de tipo estructural desde el punto de vista de su uso en la industria de la ingeniería civil. L’esprit Ingénieux, 10(1), 9-34. Recuperado de http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/2117
Seção
Artículos 10
Biografia do Autor

José Leonardo Sánchez Mondragón

Facultad Ingeniería Civil. Universidad Santo Tomás, Tunja, Colombia.

Referências

Concha; Alejandro, “Historia del Acero,” ArchDaily Colombia, 2010.

T. A. Wertime, “The beginnings of metallurgy: A new look,” Science (80-. )., 1973.

J. Simon, J. Tartera, M. Marsal, and J. Auladell i Marquès, “De los íberos al imperio romano. Evolución tecnológica del hierro,” Rev. Metal., 2005.

A. Guadalupe, “Tratamiento térmico del acero,” Universidad Nacional de Ingeniería, 2014.
[5] G. P. Rodríguez, M. Checa, and J. J. De Damborenea, “Corrosion behaviour of high-power laser coatings | Evaluación del comportamiento frente a la corrosión de recubrimientos procesados
con láser de alta potencia,” Rev. Metal., 2005.

J. A. P. González, “Losas de concreto reforzadas con acero inoxidable de desecho,” Rev. Ing. Constr., 2008.

A. Valencia, “Los aceros avanzados-Advanced Steels,” Rev. Colomb. Mater., 2012.

Gema Blanco Rodriguez, “Corrosión de nuevos tipos de armadurs de acero inoxidable para estructuras de hormigón armado,” 2009.

M. Sádaba, G. Martínez, and M. Sánchez, “Uso del Acero Inoxidable como Material de Refuerzo en
Estructuras de Concreto Armado,” Port. Electrochim. Acta J. Port. Electrochem. Soc., 2005.

W. Aperador, C. Amaya, and J. Butista, “Evaluación de la Resistencia a la Corrosión Erosión de Recubrimientos Multicapas de TiN/AlTiN,” Rev. Latinoam. Metal. y Mater., 2012.

B. Jaramillo, J. A. Calderón, and J. Guillermo, “Evaluación electroquímica de aceros autoprotectores en condiciones simuladas de laboratorio Electrochemical assessment of weathering steels under simulated laboratory conditions,” pp. 200–210, 2006.

U. T. De Pereira, “Evaluación Y Caracterización De La Herrumbre De Aceros Autoprotectores ( Patinables ) Obtenida En Diferentes Ensayos,” vol. XIII, no. June, pp. 531–536, 2007.

J. Galán, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, “Aceros avanzados de alta resistencia en la industria automovilística,” Adv. high strength steels Automot. Ind., 2012.

S.-C. Xenia Isbel, V.-L. René Valentino, C.- P. Francisco Eduardo, and M. Rigoberto, “Resistencia al clima tropical de aceros galvanizados con y sin recubrimiento,” Ing. Investig. y Tecnol., 2014.

B. Hortigón, J. M. Gallardo, E. J. Nieto-García, and J. A. López, “Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar,” Rev. Metal., 2017.

R. W. Lycett and A. N. Hughes, “Corrosion,” in Metal and Ceramic Biomaterials: Volume II Strength and Surface, 2018.

R. Loto, “Electrochemical analysis of the corrosion inhibition properties of L-leucine and trypsin complex admixture on high carbon steel in 1 M H2SO4 solution,” Rev. Colomb. Química, 2018.

J. R. Galvele, “Tafel’s law in pitting corrosion and crevice corrosion susceptibility,” Corros. Sci., 2005.

Q. C. Salinas, “Conceptos básicos de la corrosión,” Ingenio Libre, 2010.

M. T. Cortés and P. Ortiz, “Corrosión,” Apunt. científicos uniandinos, 2004. [21] Borja Acosta Piñero, “Procesos de Pintura en los Buques Mercantes,” Univ. la laguna, vol. 1, p. 108, 2016.

L. Garita Arce, L. Rivolta Carvallo, and M. Vega León, “EVALUACIÓN DE LA CORROSIÓN POR PICADURA EN ALEACIONES DE ALUMINIO,” Rev. Ing., 2013.

C. A. López C., “ANÁLISIS DE FALLA POR CORROSIÓN BAJO TENSIÓN EN LA TUBERÍA DE UN INTERCAMBIADOR DE CALOR. (Spanish),” Stress Corros. Fail. Anal. PIPE A HEAT Exch., 2013.

S. P. Knight, M. Salagaras, and A. R. Trueman, “The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography,” Corros. Sci., 2011.

T. E. S. S. D. Associati, “Acero Inoxidable,” ¿Qué es el acero Inox., 2012.

G. José Nunes, Metalografia. 2018.

I. S, F. J, and G. J. M., “Estudio del crecimiento de grano de la fase austenítica en un acero HSLA de bajo contenido en carbono,” Revista de Metalurgia, 2008.

A. C. F. M. Costa, K. M. S. Viana, E. Miola, S. G. Antonio, C. O. Paiva Santos, and R. H. G. A. Kiminami, “Análise estrutural e morfológica de ferrita NiFe2O4 dopada com cromo,” Rev. Eletrônica Mater. e
Process., 2011.

Rev Metal, “Procesos Metalúrgicos De Aceros Microaleados De Alta Resistencia 450 Emz Tipo Ii En La
Zona Afectada … Metallurgical Transformations of High Strength Low Alloys Steels 450 Emz Type Ii in the Heat Affected …,” vol. 42, no. 4, pp. 256–269, 2006.

P. Larrañaga and J. Sertucha, “Estudio térmico y estructural del proceso de solidificación de fundiciones de hierro con grafito laminar,” Rev. Metal., vol. 46, no. 4, pp. 370–380, 2010.

Oliva, Universidad Complutense de Madrid ( ES ). 2003.

[32] F. L. Alférez, J. J. Olaya, and J. H. Bautista,
“Synthesis and corrosion resistance
evaluation of coatings of SiO2-TiO2-
ZrO2-BiO2 on 316L stainless produced
by sol-gel,” Bol. la Soc. Esp. Ceram. y
Vidr., vol. 57, no. 5, pp. 195–206, 2018.
[33] S. A. L. Alanis, “CARACTERIZACIÓN DE
ACEROS INOXIDABLES Y ESTUDIO DE
SU RESISTENCIA MECÁNICA Y CONFORMABILIDAD,”
2011.

J. Capus, “100 years of stainless steel,” Metal Powder Report. 2013.

A. Moffit, “Tomo 3: La industria del hierro y el acero,” in ENCICLOPEDIA DE SALUD Y SEGURIDAD EN EL TRABAJO, 2012.

A. Moffit, “Hierro y Acero,” in Enciclopedia De Salud Y Seguridad En El Trabajo, 2012.

F. Bagley, “Estructura y Propiedades - Aluminio y sus aleaciones,” Comput. Methods Appl. Mech. Eng., 2015.

R. Sacks and R. Partouche, “Empire State Building Project: Archetype of ‘Mass Construction,’” J. Constr. Eng. Manag., 2010.

E. State and B. Goes, “The Empire State Building Goes Green,” Building, 2009.

A. Valencia Giraldo, “Los aceros avanzados,” Rev. Colomb. Mater., 2011.

A. Ayestarán, C. Graciano, and O. A. González-Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante análisis por elementos finitos,” Rev. UIS Ing., 2017.

Á. F. Mora, “Corrosión intergranular en aceros inoxidables,” Ing. e Investig. n{ú}m. 2 (1982); 20-24 Ing. e Investig. n{ú}m. 2 (1982); 20-24 2248-8723 0120-5609, 2011.

A. C. Pereira, F. S. de Assis, and A. dos S. Paula, “CARACTERIZAÇÃO MECÂNICA DA FASE AUSTENITA DO AÇO INOXIDÁ- VEL 304L E DA LIGA NiTi RICA EM Ni UTILIZANDO A TÉCNICA DE ULTRAMICRODUREZA INSTRUMENTADA,” 2017.

C. Rodríguez and M. V. Biezma, “Detección de la corrosión por picadura en aceros inoxidables empleando ultrasonidos,” Rev. Metal., 2014.

J. L. Polo Sanz, C. L. Torres, E. Cano, andJ. M. Bastidas, “Estudio de impedancia de la corrosión del acero inoxidable AISI 316L en las regiones pasiva y de picadura,” Rev. Metal., vol. 35, no. 6,
pp. 368–378, 2010.

D. S. F. B. Y. E. J. B. A. D. N. R. N. S. Q. PUENTES, “Caracterización de un acero inoxidable obtenido de una barilla lisa.” Universidad Tecnológica y Pedagógica de Colombia U.P.T.C, Tunja, Colombia, 2019.

J. Smith, William & Hashemi, “CAPÍTULO 1: Introducción a la ciencia e ingeniería de los materiales,” in Fundamentos de la Ciencia e Ingenieria de Materiales, 2006.

Jie Zhang, “Princípio de Ciência e Engenharia dos Materiais,” Acta Mater., 1998.

M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. de la Fuente, “Weathering steels: From empirical development to scientific design. A review,” Corrosion Science. 2014.

I. Díaz et al., “Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments,” Corros. Sci., vol. 141, no. July, pp. 146–157, 2018.

K. Jauregui-coto, L. Veleva, G. I. Boliolópez, and D. A. López-sauri, “Primeras etapas de corrosión de metales en agua de mar artificial II. Acero inoxidable AISI 304,” Rev. Cienc. y Tecnol., vol. 9, no. 4, pp. 9–17, 2013.

M. Suarez and K. Sinqui, “Oxidación Y Corrosión,” Quim. Org., 2001.

B. Chico, D. De La Fuente, J. M. Vega, and M. Morcillo, “Corrosivity maps of Spain for zinc in rural atmospheres,” Mapas España Corros. del zinc en atmósferas Rural., 2010.

N. Hyvert, “Application de l’approche probabiliste à la durabilité des produits préfabriqués en béton,” Univ. Toulouse, 2009.

K. Kreislova and H. Geiplova, “Evaluation of corrosion protection of steel bridges,” in Procedia Engineering, 2012.

A. Raman, S. Nasrazadani, and L. Sharma, “Morphology of rust phases formed on weathering steels in various laboratory corrosion tests,” Metallography, 1989.

A. Artigas, “Comportamiento a la corrosión atmosférica marina de aceros autopatinables con estructura ferrítico perlítica y ferrítico martensítica,” Rev. Mater., 2015.

D. G. Cañon, “Estructura cristalina,” Ing. los Porc. Fabr., 2015. [59] F. Bolivar, A. Morales, and C. Arroyave, “Simulation of a long term atmospheric corrosion process on plain and weathering steels,” Rev. Metal., no. SPEC.VOLUME, pp. 265–269, 2003.

W. Wu, X. Cheng, H. Hou, B. Liu, and X. Li, “Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere,” Appl. Surf. Sci., vol. 436, pp. 80–89, 2018.

Y. Qian, C. Ma, D. Niu, J. Xu, and M. Li, “Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels,” Corros. Sci., 2013.

J. J. MEDINA, J. M. MESA, and I. M. DUEÑAS, “Caracterización de Aceros Autoprotectores A588 y A574.” Universidad Tecnológica y Pedagógica de Colombia U.P.T.C, 2016.

Z. Wang, J. Liu, L. Wu, R. Han, and Y. Sun, “Study of the corrosion behavior of weathering steels in atmospheric environments,” Corros. Sci., 2013.

D. Mizuno, S. Suzuki, S. Fujita, and N. Hara, “Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor,” Corros. Sci., 2014.

H. E. Townsend, “Effects of alloying elements on the corrosion of steel in industrial atmospheres,” Corrosion, 2001.

M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mäntylä, “High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits,” Corros. Sci., 2004.

C. A. Vázquez Rodríguez, “Estudio de corrosión atmosférica para aceros galvanizados
y pintados en condiciones marítimas, industriales y urbanas,” in Memorias del Congreso de la Sociedad Mexicana e Electroquímica, 2016.

B. Chico, D. De La Fuente, J. M. Vega, and M. Morcillo, “Mapas de España de corrosividad del zinc en atmósferas rurales,” Rev. Metal., 2010.

T. Prosek, D. Thierry, C. Taxén, and J. Maixner, “Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions,” Corros. Sci., 2007.

E. Anzola, “Influencia del estado superficial del acero en la corrosion del acero de refuerzo del hormigon expuesto en ambientes marinos,” Eff. steel Surf. Cond. Reinf. steel Corros. Concr. Expo.
to Mar. Environ., 2005.