Flow chart for the construction of geological profiles through the processing of geographically referenced vector or raster information using software for Geographic Information Systems (GIS) and computer aided design software (DAC)
Main Article Content
Abstract
This document contains the procedure for developing a flow chart on the creation of a geological cross section using QGIS and AutoCAD as tools. This construction was carried out based on the knowledge learned in geology classes, that were subsequently taught to the students during the development of the monitoring sessions. In addition, a bibliographic review of scientific documents and articles was carried out, whose objective was the identification of reference protocols for the flow chart construction.
Article Details
How to Cite
Cetina C, M. J., & Flechas Fajardo, G. (2021). Flow chart for the construction of geological profiles through the processing of geographically referenced vector or raster information using software for Geographic Information Systems (GIS) and computer aided design software (DAC). L’esprit Ingénieux, 11(1), 20-32. Retrieved from http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/2331
Section
Artículos
References
Anquez, P., Pellerin, J., Irakarama, M., Cupillard, P., Lévy, B., & Caumon, G. (2019). Automatic correction and simplification of geological maps and cross-sections for numerical simulations. Comptes Rendus Geoscience, 351(1), 48-58. DOI: https://doi.org/10.1016/j.crte.2018.12.001
AUTODESK. (2019). What is a CAD software? Recuperado de: https://www.autodesk.com/solutions/cad-software
Arcview 9.x (2a. ed.). (2018). Editorial ICB. Recuperado de: https://ebookcentral.proquest.com
Chamrar, A., Oujidi, M., El Mandour, A., & Jilali, A. (2019). 3D geological modeling of Gareb - Bouareg basin
in northeast Morocco. Journal of African Earth Sciences, 154, 172–180. DOI : https://doi.org/10.1016/j.jafrearsci.2019.03.023
Duque, G. (2017). Manual de geología para ingenieros. Macizo rocoso (307- 337). Universidad Nacional de Colombia - Sede Manizales. Recuperado de: http://bdigital.unal.edu.co/1572/294/macizorocoso.pdf
Griffiths, J. (2019). Engineering Geology: Geological Maps for Engineering Geology. Reference Module in Earth Systems and Environmental Sciences, 2, 1-14. DOI: https://doi.org/10.1016/B978-0-12-409548-9.11849-4
Grose, L., Ailleres, L., Laurent, G., Armit, R., & Jessell, M. (2019). Inversion of geological knowledge for
fold geometry. Journal of Structural Geology, 119, 1-14. DOI: https://doi.org/10.1016/j.jsg.2018.11.010
Han JQ. (2007). Research on the autoplotting of geological profile based on GIS. Sci- Tech Information Development & Economy;17 (31), 203 - 4 [In Chinese].
Harumi, M., Fonseca, H., & Américo, L. (2017). Uso do software livre QGIS (Quantum GIS) para
ensino de Geoprocessamento em nível superior. Revista Cartográfica, (94), 127–148. Recuperado de
https://www.researchgate.net/profile/Homero_Fonseca_Filho/publication/323966811_Uso_do_software_
livre_QGIS_Quantun_Gis_para_ensino_de_Geoprocessamento_em_nivel_superior/links/5ab523c10f7e9b68ef4beae1/Uso-do-software-livre-QGIS-Quantun-Gis-para-ensinode-Geoprocessamento-em-nivelsuperior.pdf
Hernández, C. R., Rivero, C. M. D., & Acosta, H. Á. (2018). MyMAPA 1.0. Plataforma para la construcción de Sistemas de información Geográfica. Ciencias de la Información, 48(3), 28-32. Recuperado de: http://cinfo.idict.cu/index.php/cinfo/article/view/883/561561568
Hu, B., & Zhu, L. (2011). The design and realization of the information system of geological profiles based
on ArcEngine. Proceedings of 2011 International Conference on Computer Science and Network Technology. (2), 1307-1310. DOI: 10.1109/ICCSNT.2011.6182200
Ichoku, C., Chorowicz, J., & Parrot, J. F. (1994). Computerized construction of geological cross sections from digital maps. Computers & Geosciences, 20(9), 1321-1327. DOI : https://doi.org/10.1016/0098-3004(94)90057-4
Institut Cartogràfic i Geològic de Catalunya. Los cortes geológicos. Recuperado de http://www.icgc.cat/
es/Ciudadano/Explora-Cataluna/Atlas2/Atlas-geologico-de-Cataluna/Los-cortes-geologicos.
Jarna, A., Grøtan, B. O., Henderson, I. H. C., Iversen, S., Khloussy, E., Nordahl, B., & Rindstad, B. I. (2016). Managing geological profile databases for 3D visualisation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42 (2/W2), 115-121. DOI: 10.5194/
isprs-archives-XLII-2-W2-115-2016
Jing,W., Xuejuan, W., & Xiaolong, W. (2019).Three-dimensional visual modelling of geological information of hydraulic engineering based on surface constraint reconstruction. International
Journal of Engineering Systems Modelling and Simulation; 11(1), 11-18. DOI: 10.1504/IJESMS.2019.098905
Jingqiu, Y, Xinfa, Q., Anbo, L., & Mingyue, L. (2011). Automatic drawing of the geologic profile of an underground mine based on COMGIS. Mining Science and Technology (China), 21(1), 77-81. DOI: 10.1016/j.mstc.2010.12.015
López del Pino. S. J., & Martín, C. S. (2017). Orientación y trazado de recorridos en el medio natural o urbano: UF 0729. Recuperado de: https://ebookcentral.proquest.com
López, L. B., & Breña, C. V. (2014). Autocad 2013. El entorno de trabajo de AutoCAD (15-18). Recuperado
de ProQuest Ebook Central [19] [19] Lopez-Mir, B. (2019). Cross-Section Construction and Balancing: Examples From the Spanish Pyrenees. Problems and Solutions in Structural Geology and Tectonics, 5 , 3–23. DOI :10.1016/b978-0-12-814048-2.00001-6
Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.-X., & Chen, M. (2018). Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of Geographical Information Science, 33(2), 1–22. DOI: 10.1080/13658816.2018.1533136
Martín, S., Antón, L., Martín, C., & Martín, F. (2017). Cortes geológicos con ordenador. Enseñanza de las Ciencias de la Tierra, 25(2), 229-236. Recuperado de https://core.ac.uk/download/pdf/132355522.pdf
[22] [22] Martín, S., Uzkeda, H., Poblet, J., Bulnes, M., & Rubio, R. (2013). Construction of accurate
geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry. Computers
& Geosciences, 51, 90–100. DOI: 10.1016/j.cageo.2012.09.014
Mohanty, P., Padhy, H. M., & Mishra, P. (2018). Geoweb Application for Web based geoprocessing. Asian Journal For Convergence In Technology (AJCT), 4(2). DOI: https://doi.org/10.33130/asianjournals.v4iII.624
Pérez, R. A., & Vrba, A. (2017). Ciencias de la tierra. Recuperado de: https://ebookcentral.proquest.com
Rull del Castillo, V. (2018). El antropococeno. Recuperado de: https://ebookcentral.proquest.com
Seguí, A.E.; Portalés, C.; Cabrelles, M.; Lerma, J.L. (2012). Los sistemas de información geográfica: concepto, ventajas y posibilidades en el campo de la restauración. Loggia, Arquitectura & Restauración. (24-25), 122-131. DOI:10.4995/loggia.2012.3008
Servicio Geológico Colombiano. (2019). Glosario. Recuperado de: https://www2.sgc.gov.co/AtencionAlCiudadano/Paginas/Glosario.aspx
Silva, J. X. (2012). Uma Posição Crítica e Atuante para a Geografia. Espaço Aberto, 2(1), 17-26.
Scheider, S., & Ballatore, A. (2018). Semantic typing of linked geoprocessing workflows. International Journal of Digital Earth, 11(1), 113–138. DOI : https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1080/17538947.2017.1305457
Soldo, L., Vendramini, M., & Eusebio, A. (2019). Tunnels design and geological studies. Tunneling &
Underground Space Technology, 84, 82–98. DOI: https://doi.org/10.1016/j. tust.2018.10.013
Thornton, M., Mariethoz, G., & Brunner, P. (2018). A 3D geological model of a structurally complex Alpine
region as a basis for interdisciplinary research. Scientific data, 5 (180238). DOI: 10.1038/sdata.2018.238
Vega, B. (2018). Generación de mapas temáticos de zonas de riesgo en ciudades intermedias de la Sierra
del Ecuador a través de herramientas de geoprocesamiento como elemento innovador para la ordenación urbanística (Bachelor ’s thesis). Universidad de Cuenca, Facultad de Arquitectura y urbanismos. Recuperado de: http://dspace.ucuenca.edu.ec/handle/123456789/30711
Zhang , Q., & Zhu, H. (2018). Collaborative 3D geological modeling analysis based on multi-source data standard. Engineering Geology. DOI: 10.1016/j.enggeo.2018.10.001
AUTODESK. (2019). What is a CAD software? Recuperado de: https://www.autodesk.com/solutions/cad-software
Arcview 9.x (2a. ed.). (2018). Editorial ICB. Recuperado de: https://ebookcentral.proquest.com
Chamrar, A., Oujidi, M., El Mandour, A., & Jilali, A. (2019). 3D geological modeling of Gareb - Bouareg basin
in northeast Morocco. Journal of African Earth Sciences, 154, 172–180. DOI : https://doi.org/10.1016/j.jafrearsci.2019.03.023
Duque, G. (2017). Manual de geología para ingenieros. Macizo rocoso (307- 337). Universidad Nacional de Colombia - Sede Manizales. Recuperado de: http://bdigital.unal.edu.co/1572/294/macizorocoso.pdf
Griffiths, J. (2019). Engineering Geology: Geological Maps for Engineering Geology. Reference Module in Earth Systems and Environmental Sciences, 2, 1-14. DOI: https://doi.org/10.1016/B978-0-12-409548-9.11849-4
Grose, L., Ailleres, L., Laurent, G., Armit, R., & Jessell, M. (2019). Inversion of geological knowledge for
fold geometry. Journal of Structural Geology, 119, 1-14. DOI: https://doi.org/10.1016/j.jsg.2018.11.010
Han JQ. (2007). Research on the autoplotting of geological profile based on GIS. Sci- Tech Information Development & Economy;17 (31), 203 - 4 [In Chinese].
Harumi, M., Fonseca, H., & Américo, L. (2017). Uso do software livre QGIS (Quantum GIS) para
ensino de Geoprocessamento em nível superior. Revista Cartográfica, (94), 127–148. Recuperado de
https://www.researchgate.net/profile/Homero_Fonseca_Filho/publication/323966811_Uso_do_software_
livre_QGIS_Quantun_Gis_para_ensino_de_Geoprocessamento_em_nivel_superior/links/5ab523c10f7e9b68ef4beae1/Uso-do-software-livre-QGIS-Quantun-Gis-para-ensinode-Geoprocessamento-em-nivelsuperior.pdf
Hernández, C. R., Rivero, C. M. D., & Acosta, H. Á. (2018). MyMAPA 1.0. Plataforma para la construcción de Sistemas de información Geográfica. Ciencias de la Información, 48(3), 28-32. Recuperado de: http://cinfo.idict.cu/index.php/cinfo/article/view/883/561561568
Hu, B., & Zhu, L. (2011). The design and realization of the information system of geological profiles based
on ArcEngine. Proceedings of 2011 International Conference on Computer Science and Network Technology. (2), 1307-1310. DOI: 10.1109/ICCSNT.2011.6182200
Ichoku, C., Chorowicz, J., & Parrot, J. F. (1994). Computerized construction of geological cross sections from digital maps. Computers & Geosciences, 20(9), 1321-1327. DOI : https://doi.org/10.1016/0098-3004(94)90057-4
Institut Cartogràfic i Geològic de Catalunya. Los cortes geológicos. Recuperado de http://www.icgc.cat/
es/Ciudadano/Explora-Cataluna/Atlas2/Atlas-geologico-de-Cataluna/Los-cortes-geologicos.
Jarna, A., Grøtan, B. O., Henderson, I. H. C., Iversen, S., Khloussy, E., Nordahl, B., & Rindstad, B. I. (2016). Managing geological profile databases for 3D visualisation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42 (2/W2), 115-121. DOI: 10.5194/
isprs-archives-XLII-2-W2-115-2016
Jing,W., Xuejuan, W., & Xiaolong, W. (2019).Three-dimensional visual modelling of geological information of hydraulic engineering based on surface constraint reconstruction. International
Journal of Engineering Systems Modelling and Simulation; 11(1), 11-18. DOI: 10.1504/IJESMS.2019.098905
Jingqiu, Y, Xinfa, Q., Anbo, L., & Mingyue, L. (2011). Automatic drawing of the geologic profile of an underground mine based on COMGIS. Mining Science and Technology (China), 21(1), 77-81. DOI: 10.1016/j.mstc.2010.12.015
López del Pino. S. J., & Martín, C. S. (2017). Orientación y trazado de recorridos en el medio natural o urbano: UF 0729. Recuperado de: https://ebookcentral.proquest.com
López, L. B., & Breña, C. V. (2014). Autocad 2013. El entorno de trabajo de AutoCAD (15-18). Recuperado
de ProQuest Ebook Central [19] [19] Lopez-Mir, B. (2019). Cross-Section Construction and Balancing: Examples From the Spanish Pyrenees. Problems and Solutions in Structural Geology and Tectonics, 5 , 3–23. DOI :10.1016/b978-0-12-814048-2.00001-6
Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.-X., & Chen, M. (2018). Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of Geographical Information Science, 33(2), 1–22. DOI: 10.1080/13658816.2018.1533136
Martín, S., Antón, L., Martín, C., & Martín, F. (2017). Cortes geológicos con ordenador. Enseñanza de las Ciencias de la Tierra, 25(2), 229-236. Recuperado de https://core.ac.uk/download/pdf/132355522.pdf
[22] [22] Martín, S., Uzkeda, H., Poblet, J., Bulnes, M., & Rubio, R. (2013). Construction of accurate
geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry. Computers
& Geosciences, 51, 90–100. DOI: 10.1016/j.cageo.2012.09.014
Mohanty, P., Padhy, H. M., & Mishra, P. (2018). Geoweb Application for Web based geoprocessing. Asian Journal For Convergence In Technology (AJCT), 4(2). DOI: https://doi.org/10.33130/asianjournals.v4iII.624
Pérez, R. A., & Vrba, A. (2017). Ciencias de la tierra. Recuperado de: https://ebookcentral.proquest.com
Rull del Castillo, V. (2018). El antropococeno. Recuperado de: https://ebookcentral.proquest.com
Seguí, A.E.; Portalés, C.; Cabrelles, M.; Lerma, J.L. (2012). Los sistemas de información geográfica: concepto, ventajas y posibilidades en el campo de la restauración. Loggia, Arquitectura & Restauración. (24-25), 122-131. DOI:10.4995/loggia.2012.3008
Servicio Geológico Colombiano. (2019). Glosario. Recuperado de: https://www2.sgc.gov.co/AtencionAlCiudadano/Paginas/Glosario.aspx
Silva, J. X. (2012). Uma Posição Crítica e Atuante para a Geografia. Espaço Aberto, 2(1), 17-26.
Scheider, S., & Ballatore, A. (2018). Semantic typing of linked geoprocessing workflows. International Journal of Digital Earth, 11(1), 113–138. DOI : https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1080/17538947.2017.1305457
Soldo, L., Vendramini, M., & Eusebio, A. (2019). Tunnels design and geological studies. Tunneling &
Underground Space Technology, 84, 82–98. DOI: https://doi.org/10.1016/j. tust.2018.10.013
Thornton, M., Mariethoz, G., & Brunner, P. (2018). A 3D geological model of a structurally complex Alpine
region as a basis for interdisciplinary research. Scientific data, 5 (180238). DOI: 10.1038/sdata.2018.238
Vega, B. (2018). Generación de mapas temáticos de zonas de riesgo en ciudades intermedias de la Sierra
del Ecuador a través de herramientas de geoprocesamiento como elemento innovador para la ordenación urbanística (Bachelor ’s thesis). Universidad de Cuenca, Facultad de Arquitectura y urbanismos. Recuperado de: http://dspace.ucuenca.edu.ec/handle/123456789/30711
Zhang , Q., & Zhu, H. (2018). Collaborative 3D geological modeling analysis based on multi-source data standard. Engineering Geology. DOI: 10.1016/j.enggeo.2018.10.001