Aplicación del modelo Black- Sholes-Merton en el estudio del comportamiento errático de los incrementos de caudales máximos (río Fonce, Santander)

Main Article Content

Javier Correa-Herrera
Arnold Castro-García
Hebert Gonzalo Rivera

Abstract

This work is the result of the Scientific Research Project of New Granada Military University ING1544 of 2014, which was developed together with the University of Pamplona (Norte de Santander). This paper shows the application of the Black-Sholes-Merton (BSM) financial model transferred to the hydrological environment to study the erratic movements of the increases in peak flows of Fonce river (San Gil, Santander). For this purpose, the BSM stochastic differential equation is solved. Firstly, it was identified that the behavior of the maximum values of annual flows in the river Fonce is caused by a non-stationary process, since from the year 1980 their average increases. Afterwards, it was found that the behavior of the increases in the flow follows the properties of the Wiener process. Finally, a first approximation of the analytical solution BSM model is applied. The results show clearly a viability in modeling with stochastic differential equations of the flow behavior in the Fonce River.

Article Details

How to Cite
Correa-Herrera, J., Castro-García, A., & Gonzalo Rivera, H. (2016). Aplicación del modelo Black- Sholes-Merton en el estudio del comportamiento errático de los incrementos de caudales máximos (río Fonce, Santander). L’esprit Ingénieux, 5(1). Retrieved from http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/1233
Section
Articulos L'esprit Ingénieux 05

References

Bhattacharya, R. N., Gupta, V. K. y Sposito, G. (1976). On the stochastic foundations of the theory of water flow through unsaturated soil. Water Resources Research, 12, 503-512.

Benninga, S. (2008). Financial modeling. Cambridge: The MIT Press:

Capasso, V. y Bakstein, D. (2012). An introduction to continuos-time stochastic processes. Nueva York: Birkhäuser.

De la Rosa, E. (2003). Procesos estocásticos en ingeniería civil. Madrid: Colegio de Ingenieros de Caminos, Canales y Puertos.

Grigoriu, M. (2002). Stochastic calculus. Nueva York: Birkhäuser.

Oksendal, B. (2003). Stochastic differential equations. Berlín: Springer-Verlag.

Risken, H. (1988). The Fokker-Planck equation. Berlín: Springer.

Rivera, H. G. (2013). Aplicación del modelo del proceso estocástico Wiener al comportamiento diario de los caudales máximos mediante el uso de σ-álgebras. Caso de estudio: rio Fonce en San Gil (Santander) (proyecto de investigación inédito). Bogotá: Universidad Militar Nueva Granada.

Rivera, H. G., Palacio Gómez, D. C. y Rangel Guerrero F. M. (2013). Impacto de los escenarios de cambio climático en los recursos naturales renovables en jurisdicción de la Corporación Autónoma Regional de Santander. Bogotá: Universidad Nacional de Colombia.

Most read articles by the same author(s)