El Uso de alcohol como combustible en motores de combustión interna

Contenido principal del artículo

Héctor Hugo Riojas González
Héctor A. Ruiz
Liborio Jesús Bortoni Anzures
Juan Julián Martinez Torres

Resumen

El uso de biocombustibles renovables puede desempeñar un papel protagónico en la seguridad energética, así como para reducir la dependencia del petróleo, que por cierto se está agotando. Entre los biocombustibles líquidos se encuentra el alcohol el cual su composición y propiedades dependerá de las materias primas y las condiciones de su procesamiento, para esto existen dos vías para la obtención del alcohol en su aplicación en motor de combustión interna, ya sea por la vía química o biológica. En cuanto a su producción se prevé que a medida que la demanda de los alcoholes aumente, el costo será más competitivo. Los bioalcoholes pueden ser aplicados en motor a gasolina ya sea en mezcla o con aditivos, su empleo obtiene algunos beneficios como la generación de combustión más limpia produciendo menos CO y NOx, en el caso del motor diésel puede aplicarse el alcohol de diversas   formas como fumigación, combustión dual, en mezcla de alcohol con diésel y como emulsión. Finalmente, los motores HCCI tienen una gran capacidad de quemar múltiples combustibles con diversas propiedades físicas y químicas, por lo que son candidatos naturales para aplicarlos con bioalcoholes.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Riojas González, H. H., Ruiz, H. A., Bortoni Anzures, L. J., & Martinez Torres, J. J. (2023). El Uso de alcohol como combustible en motores de combustión interna. Ingenio Magno, 14(1), 14 - 25. Recuperado a partir de http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/2607
Sección
Articulos

Citas

Abedin, M. J., Imran, A., Masjuki, H. H., Kalam, M. A., Shahir, S. A., Varman, M., & Ruhul, A. M. (2016). An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation. Renewable and Sustainable Energy Reviews, 60, 306-316. https://doi.org/10.1016/j.rser.2016.01.118
Abu-Qudais M, Haddad O, Qudaisat M. (2000). The effect of alcohol fumigation on diesel engine performance and emissions. Energy Convers Manag; 41:389–99.
Akansu, Selahaddin & Tangöz, Selim & Kahraman, Nafiz & Ilhak, Mehmet & Açıkgöz, Salih. (2017). Experimental study of gasoline-ethanol-hydrogen blends combustion in an SI engine. International Journal of Hydrogen Energy. 10.1016/j.ijhydene.2017.07.014.
Al-attab, Khaled & Zainal, Z.A. & Enagi, Ibrahim. (2018). Liquid biofuels utilization for gas turbines: A review. Renewable and Sustainable Energy Reviews. 90. 10.1016/j.rser.2018.03.006.
Alenezi R, Santos R, Raymahasay S, Leeke G. (2013). Improved biodiesel manufacture at low temperature and short reaction time. Renew Energy, 53:242–8.
Al-Hamamre Z, Yamin J. (2013). The effect of hydrogen addition on premixed laminar acetyleneehydrogeneair and ethanolehydrogeneair flames. Int J Hydrogen Energy, 38:7499e509.
Alisaraei AT, Asl AR. (2016). The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine. Fuel. 185:718–33.
Ananthakumar S, Jayabal S, Thirumal P. (2016). Investigation on performance, emission and combustion characteristics of variable compression engine fuelled with diesel, waste plastics oil blends. J Braz Soc Mech Sci Eng. http://dx.doi.org/10.1007/s40430-016-0518-6.
Atmanli A. (2016). Comparative analyses of dieselewaste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel 176, 209-215.
Atmanli A, Erol Ileri, Nadir Yilmaz. (2016a). Optimization of diesel-butanolvegetable oil blend ratios based on engine operating parameters, Energy 96 (1) 569-580.
Atmanlı A. & Yilmaz, Nadir. (2018). A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel. 234. 161-169. 10.1016/j.fuel.2018.07.015.
Amrouche F, Erickson PA, Park JW, Varnhagen S. (2016). An experimental evaluation of ultra-lean burn capability of a hydrogen-enriched ethanol-fuelled Wankel engine at full load condition. Int J Hydrogen Energy, 41:19231e42. https://doi.org/10.1016/j.ijhydene.2016.07.267.
Awad O.I, R. Mamat, Obed M. Ali, N.A.C. Sidik, T. Yusaf, K. Kadirgama, Maurice Kettner. (2018). Alcohol and ether as alternative fuels in spark ignition engine: A review, Renewable and Sustainable Energy Reviews, Volume 82, Part 3, Pages 2586-2605, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.09.074.
Awad, Omar & Mamat, Rizalman & Ibrahim, Thamir & Thaeer Hammid, Ali & Humada, Ali Mahmood. (2018a). Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renewable and Sustainable Energy Reviews. 91. 10.1016/j.rser.2018.03.107.
Bae C, Jaeheun Kim. (2017). Alternative fuels for internal combustion engines, Proceedings of the Combustion Institute, Volume 36, Issue 3, Pages 3389-3413, ISSN 1540-7489, https://doi.org/10.1016/j.proci.2016.09.009.
Bahlouli, K. & Atikol, Ugur & Saray, R. & Mohammadi, Vahid. (2014). A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine. Energy Conversion and Management. 79. 85–96. 10.1016/j.enconman.2013.12.005.
Britto RF, Jr., Martins CA. (2014). Experimental analysis of a diesel engine operating in Diesel-Ethanol Dual-Fuel mode. Fuel, 134:140–50.
Babu VM, Madhu Murthy K, Amba Prasad Rao G. (2017). Butanol and pentanol: The promising biofuels for CI engines – A review, Renewable and Sustainable Energy Reviews, Volume 78, Pages 1068-1088, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.05.038.
Calam A, Solmaz H, Uyumaz A, Polat S, Yilmaz E, Içingür Y. (2015). Investigation of usability of the fusel oil in a single cylinder spark ignition engine. J Energy Inst, 88:258–65.
Campos-Fernández J, Arnal JM, Gómez J, Dorado MP. (2012). A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Appl Energy, 95:267–75.
Campos-Fernández J, Arnal JM, Gomez J, Lacalle N, Dorado MP. (2013). Performance tests of a diesel engine fueled with pentanol/diesel fuel blends. Fuel, 107:866–72.
Chang D., Islam Z., Zheng J., Zhao J., Cui X., Yu Z. (2021). Inhibitor tolerance and bioethanol fermentability of levoglucosan-utilizing Escherichia coli were enhanced by overexpression of stress-responsive gene ycfR: The proteomics-guided metabolic engineering, Synthetic and Systems Biotechnology, Volume 6, Issue 4, Pages 384-395, ISSN 2405-805X, https://doi.org/10.1016/j.synbio.2021.11.003.
Chauhan BS, Kumar N, Pal SS, Du Jun Y. (2011). Experimental studies on fumigation of ethanol in a small capacity diesel engine. Energy, 36:1030–8.
Chen Z, J.P. Liu, Z.Y. Han, B. Du, Y. Liu, C.F. Lee. (2013). Study on performance and emissions of a passenger-car diesel engine fueled with butanol-diesel blends, Energy 55; 638–646.
Chen Z, Wu Z, Liu J, Lee C. (2014). Combustion and emissions characteristics of high nbutanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact. Energy Convers Manage, 78:787–95.
Chen, Z.F., Yao, C.D., Yao, A.R., et al., (2017). The impact ofmethanol injecting position on cylinder-to-cylinder variationin a diesel methanol dual fuel engine. Fuel 191, 150-163.
Cheng CH, Cheung CS, Chan TL, Lee SC, Yao CD, Tsang KS. (2008). Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol. Fuel, 87:1870–9.
Cheung CS, Cheng C, Chan TL, Lee SC, Yao C, Tsang KS. (2008). Emissions character- istics of a diesel engine fueled with biodiesel and fumigation methanol. Energy Fuels, 22:906–14.
Christensen M, Hultqvist A, Johansson B. (1999). Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE paper 1999-01-3679.
Doğan O. (2011). The influence of n-butanol/diesel fuel blends utilization on a small diésel engine performance and emissions. Fuel, 90(7):2467–72.
Ferreira V.P, J. Martins, E.A. Torres, L.M. Pepe, M.S.R. De Souza J. (2013). Performance and emissions analysis of additional ethanol injection on a diesel engine powered with a blend of diesel-biodiesel, Energy for Sustainable Development 17; 649-657.
Gautam M, Martin DW. (2000). Combustion characteristics of higheralcohol/gasolina blends. Proc Inst Mech Eng; 214A:497-511.
Guillin-Estrada W, Maestre-Cambronel D, Bula-Silvera A, Gonzalez-Quiroga A, Duarte-Forero J. (2021). Combustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxy. Applied Sciences; 11(11):5282. https://doi.org/10.3390/app11115282
Greenwood JB, Erickson PA, Hwang J, Jordan EA. (2014). Experimental results of hydrogen enrichment of ethanol in an ultra-lean internal combustion engine. Int J Hydrog Energy, 39:12980–90.
Guo M, Song W, Buhain J. (2015). Bioenergy and biofuels: history status and perspective. Renew Sustain Energy Rev. 42:712–25. http://dx.doi.org/10.1016/j.rser.2014.10.013.
Hairuddin A.A, Talal Yusaf, Andrew P. Wandel. (2014). A review of hydrogen and natural gas addition in diesel HCCI engines, Renewable and Sustainable Energy Reviews, Volume 32, Pages 739-761, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2014.01.018.
Han X.Y, Z.Y. Yang, M.P. Wang, J. Tjong, M. Zheng. (2017). Clean combustion of n-butanol as a next generation biofuel for dieselengines, Appl. Energy. 128; 347–359.
Hariharan S, Murugan S, Nagarajan G. (2013). Effect of diethyl ether on Tyre pyrolysis oil fueled diesel engine. Fuel; 104:109–15.
Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul. (2016). Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas. Renewable and Sustainable Energy Reviews. 70. 10.1016/j.rser.2016.11.249.
Heisey JB, Lestz SS. (1981). Aqueous Alcohol Fumigation of a Single-Cylinder DI Diesel Engine. SAE Technical Paper 811208; https://doi.org/10.4271/811208.
Hossain, A. & Davies, Philip. (2013). Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review. Renewable and Sustainable Energy Reviews. 21. 165-189. 10.1016/j.rser.2012.12.031.
Hossain, Md. Farhad, Rainey, Thomas, Ristovski, Zoran, Brown, Richard. (2018). Performance and exhaust emissions of diesel engines using microalgae FAME and the prospects for microalgae HTL biocrude Renewable and Sustainable Energy Reviews, 82 (Part 3), pp.4269-4278.
Hou, J., Wen, Z., Jiang, Z., et al., (2014). Study on combustion andemissions of a turbocharged compression ignition enginefueled with dimethyl ether and biodiesel blends. Journal ofthe Energy Institute 87 (2), 102-113.
Hu E, Chen Y, Cheng Y, Meng X, Yu H, Huang Z. (2015). ‘‘Study on the effect of hydrogen addition to dimethyl ether homogeneous charge compression ignition combustion engine. J Renew Sust Energy, 7:063121.
Ileri E, Atmanli A, Yilmaz N. (2016). Comparative analyses of n-butanol–rapeseed oil–diésel blend with biodiesel, diesel and biodiesel–diesel fuels in a turbocharged direct injection diesel engine. J Energy Inst. 89:586–93.
Jeevahan, J., Mageshwaran, G., Joseph, G.B., Durai Raj, R.B., Kannan, R.T., (2017). Various strategies for reducing Nox emissions of biodiesel fuel used in conventional diésel engines: a review. Chem. Eng. Commun. 204 (10), 1202–1223.
Jamrozik, A.; Tutak, W.; Grab-Rogali ´nski, K. (2021). Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends. Energies, 14, 2817. https://doi.org/10.3390/en14102817
Jeevahan, Jeya & R B, Durairaj & Govindaraj, Mageshwaran. (2018). Experimental Investigation of the suitability of 1-Butanol Blended with Biodiesel as an Alternative Biofuel in Diesel Engines. Biocatalysis and Agricultural Biotechnology. 15. 10.1016/j.bcab.2018.05.013.
Ji C, Liu X, Wang S, Gao B, Yang J. (2014). A laminar burning velocity correlation for combustion simulation of hydrogen-enriched ethanol engines. Fuel, 133:139e42.
Kapilan N, Mohanan P, Reddy R. (2008). Performance and Emission Studies of Diesel Engine Using Diethyl Ether as Oxygenated Fuel Additive. SAE Technical Paper 2008-01-2466, doi:10.4271/2008-01-2466.
Kleinert M, Barth T. (2008). Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy & Fuels, 22(2):1371–9.
Kumar A., Kumar N., Baredar P., Shukla A. (2015). A review of biomass energy resources, potential, conversion, and policy in India Renew. Sustain. Energy Rev., 45, pp. 530-539
Kumar AS, Jayabal S, Thirumal P. (2016). Investigation on performance, emission and combustion characteristics of variable compression engine fuelled with diesel, waste plastics oil blends. J Braz Soc Mech Sci Eng. http://dx.doi.org/10.1007/s40430-016-0518-6.
Kumar, B.R., Saravanan, S., Rana, D., Nagendran, A. (2016a). A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine. Energy Convers. Manag. 119, 246-256.
Kumar, B.R., Saravanan, S., Rana, D., Anish, V., Nagendran, A. (2016b). Effect of a sustainable biofuelen-octanoleon the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Convers. Manag. 118, 275e286.
Kumar B.R, S. Saravanan. (2017). Use of higher alcohol biofuels in diesel engines: a review, Renew. Sustain. Energy Rev. 60; 84–115.
Kumar, A. Naresh & Raju, K. & Srinivas Kishore, Pisipaty & Narayana, K. (2018). Some Experimental Studies on effect of Exhaust-Gas Recirculation on Performance and Emission characteristics of a Compression-Ignition engine fuelled with Diesel and Lemon-peel oil Blends. Materials Today: Proceedings. 5. 6138-6148. 10.1016/j.matpr.2017.12.220.
Lee S, T.Y. Kim. (2017). Performance and emission characteristics of a DI diesel engine operated with diesel/DEE blended fuel, Appl. Therm. Eng. 121; 454–461.
Leng L, Yuan X, Chen X, Huang H, Wang H, Li H, et al. (2015). Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diésel microemulsion. Energy, 82:218e28. https://doi.org/10.1016/j.energy.2015.01.032.
Li, W, Ren, Y, Wang, XB. (2008). Combustion characteristics of a compression ignition engine fuelled with diesel–ethanol blends. Proc Inst Mech Eng Part D J Automobile Eng, 222: 265–274
Li L, Wang J, Wang Z, Liu H. (2015). Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy, 80:575–81.
Li, G., Zhang, C.H., Li, Y.Y., et al. (2016). Effects of diesel injectionparameters on the rapid combustion and emissions of anHD common-rail diesel engine fueled with diesel-methanoldual-fuel. Applied Thermal Engineering 108, 1214e1225.
Ma J, Lü Xingcai, Ji Libin, Huang Zhen. (2008). An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel. Int J Therm Sci; 47:1235–42.
Ma Y, Huang S, Huang R, Zhang Y, Xu S. (2017). Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber. Appl Energy; 185:519–30.
Mack JH, Schuler D, Butt RH, Dibble RW. (2016). Experimental investigation of butanol isomer combustion in homogeneous charge compression ignition (HCCI) engines. Appl Energy; 165:612–26.
Melo T.C.C, G.B. MacHado, C.R.P. Belchior, M.J. Colao, J.E.M. Barros, E.J. De Oliveira, D.G. De Oliveira. (2012). Hydrous ethanol-gasoline blends - combustion and emission investigations on a flex-fuel engine, Fuel 97, 796–804. http://doi.org/10.1016/j.fuel.2012.03.018.
Mendiburu AZ, Justo J. Roberts, João A. Carvalho, José L. Silveira. (2014). Thermodynamic analysis and comparison of downdraft gasifiers integrated with gas turbine, spark and compression ignition engines for distributed power generation, Applied Thermal Engineering, Volume 66, Issues 1–2, Pages 290-297, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2014.02.027
Mumtaz, M.W., Mukhtar, H., Dilawer, U.A., Hussain, S.M., Hussain, M., Iqbal, M. (2016). Biodiesel production from Eruca sativa oil catalyzed by Novozyme-435 and lipase. Biocatal. Agric. Biotechnol. http://dx.doi.org/10.1016/j.bcab.2016.01.003.
Örs, İlker & Sarikoc, Selcuk & Atabani (A.E. Atabani), Abdulaziz & Ünalan, Sebahattin & Akansu, Selahaddin. (2018). The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel. 234. 188. 10.1016/j.fuel.2018.07.024.
Pandian, Murugesa & Krishnasamy, Anand. (2018). Comparison of Different Low Temperature Combustion Strategies in a Light Duty Air Cooled Diesel Engine. Applied Thermal Engineering. 142. 10.1016/j.applthermaleng.2018.07.047.
Park SH, Lee CS. (2014). Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers Manage; 86:848–63.
Park, S., Cho, J., Park, J., et al. (2017). Numerical study of theperformance and NOx emission of a diesel-methanol dual-fuel engine using multi-objective Pareto optimization. Energy124, 272-283.
Patil K.R, S.S. Thipse. (2015). Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration, Energy Convers. Manage. 89; 396–408.
Qian Y, L. Ouyang, X. Wang, L. Zhu, X. Lu. (2015). Experimental studies on combustión and emissions of RCCI fueled with n-heptane/alcohols fuels, Fuel 162; 239–250.
Rakopoloulos, DC, Rakopoloulos, CD, Kakaras, EC. (2008). Effects of ethanol–diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine. Energy Convers Manage; 49: 3155–3162.
Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., & Kyritsis, D.C. (2010). Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion and Management, 51(10), 1989-1997. doi:101016/jenconman201002032
Rakopoulos DC, Rakopoulos CD, Hountalas DT, Kakaras EC, Giakoumis EG, Papagiannakis RG. (2010a). Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends. Fuel; 89(10):2781–90.
Raviteja S, Kumar GN. (2015). Effect of hydrogen addition on the performance and emission parameters of an SI engine fueled with butanol blends at stoichiometric conditions. Int J Hydrogen Energy, 40(30):9563e9.
Saxena S, Schneider S, Aceves S, Dibble R. (2012). Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels. Appl Energy. 98:448–57. http://dx.doi.org/10.1016/j.apenergy.2012.04.007.
Saxena S, David Vuilleumier, Darko Kozarac, Martin Krieck, Robert Dibble, Salvador Aceves. (2014). Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery, Applied Energy, Volume 116, Pages 269-277, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2013.11.033.
Saxena P., Alpana Singh, Niharika, Nidhi Chaudhary, Neha Arora. (2016). Twenty first century vehicle-based on non-coventional sources with advanced features. International Research Journal of Engineering and Technology, Volume:03, Issue:04, 2748-2753.
Satsangi DP, Nachiketa Tiwari. (2018). Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine, Fuel, Volume 221, Pages 44-60, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2018.02.060.
Semelsberger TA, Borup RL, Greene HL. (2006). Dimethyl ether (DME) as an alternative fuel. J Power Sources, 156:497–511.
Selim, MYE. (2001). Características presión-tiempo en motores diesel alimentados con gas natural. Energía Renovable, 22: 473 – 489.
Serrano-Ruiz JC, West RM, Dumesic J. (2010). Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng.1(1):79–100.
Shahir SA, Masjuki HH, Kalam MA, Imran A, Ashraful AM. (2015). Performance and emission assessment of diesel-biodiesel-ethanol/bioethanol blend as a fuel in diésel engines: a review. Renewable Sustainable Energy Rev, 48(Supplement C):62–78.
Shayan BS, Seyedpour SM, Ommi F, Moosavy SH, Alizadeh M. (2011). Impact of methanolegasoline fuel blends on the performance and exhaust emission of a SI engine. Int J Automot Eng, 1.
Shuofeng W, Changwei Ji, Zhang Bo. (2010). Effect of hydrogen addition on combustion and emissions performance of a spark-ignited ethanol engine at idle and stoichiometric conditions. Int J Hydrogen Energy, 35:9205e13.
Sivalakshmi S, Balusamy T. (2013). Effect of biodiesel and its blends with diethyl ether on the combustion, performance and emissions from a diesel engine. Fuel; 106:106–10.
Siwale L, Kristóf L, Adam T, Bereczky A, Penninger A, Mbarawa M, et al. (2013). Performance characteristics of n-butanol-diesel fuel blend fired in a turbo-charged compression ignition engine. J Power Energy Eng, 1(05):77.
Sun B., Wang H, Yan K, Zhang R. (2021). The research and analysis of Homogeneous Charge Compression Ignition Engine. Journal of Physics: Conference Series, 2125 (2021) 012016, 1-12, doi:10.1088/1742-6596/2125/1/012016.
Sudheesh K, Mallikarjuna JM. (2010). Diethyl ether as an igniton improver for biogás homogeneous compression ignition (HCCI) operation-an experimental investigation. Energy; 35:3614e22. http://dx.doi.org/10.1016/jenergy.2010.04.052.
Szwaja S, Naber JD. (2010). Combustion of n-butanol in a spark-ignition IC engine. Fuel; 89:1573–82.
Han X, Ming Zheng, Jimi S. Tjong, Tie Li. (2015). Suitability study of n-butanol for enabling PCCI and HCCI and RCCI combustion on a high compression-ratio diésel engine. No. 2015-01-1816, SAE Technical Paper.
Yamasaki, Yudai & Kanno, Masanobu & Suzuki, Yoshitaka & Kaneko, Shigehiko. (2013). "Development of an engine control system using city gas and biogas fuel mixture," Applied Energy, Elsevier, vol. 101(C), pages 465-474.
Yanai, Tadanori & Bryden, Geraint & Dev, Shouvik & Reader, Graham & Zheng, Ming. (2017). Investigation of ignition characteristics and performance of a neat n-butanol direct injection compression ignition engine at low load. Fuel. 208. 137-148. 10.1016/j.fuel.2017.06.096.
Yao M, Wang H, Zheng Z, Yue Y. (2010). Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel; 89(9):2191–201.
Yilmaz N, Atmanlı A. (2017). Experimental evaluation of a diesel engine running on the blends of diesel and pentanol as a next generation higher alcohol. Fuel; 210:75–82.
Yilmaz N, Ileri E, Atmanli A. (2016). Performance of biodiesel/higher alcohols blends in a diesel engine. Int J Energy Res; 40:1134e43.
Yilmaz N, Vigil FM, Benalil K, Davis SM, Calva A. (2014). Effect of biodiesel-butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel; 135:46–50.
Yilmaz, İlker & Taştan, Murat. (2018). Investigation of hydrogen addition to methanol-gasoline blends in an SI engine. International Journal of Hydrogen Energy. 43. 10.1016/j.ijhydene.2018.07.088.
Youn, I.M., Su, H.P., Roh, H.G., et al. (2011). Investigation on thefuel spray and emission reduction characteristics fordimethyl ether (DME) fueled multi-cylinder diesel enginewith common-rail injection system. Fuel Processing Technology 92 (7), 1280-1287.
Yousufuddin S, Masood M. (2009). Effect of ignition timing and compression ratio on the performance of a hydrogeneethanol fuelled engine. Int J Hydrogen Energy; 34:6945e50.
Yousufuddin S, Mehdi SN, Masood M. (2008). Performance and combustion characteristics of a hydrogen-ethanol-fuelled engine. Energy Fuels; 22:3355–62.
Yusria I.M, R. Mamata, G. Najafib, A. Razmana, O.I. Awada, et al. (2017). Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions, Renew. Sustain. Energy Rev. 77;169–181.
Zhang ZJ, Wang TY, Jia M, Wei Q, Meng XZ, Shu GQ. (2014). Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation. Fuel; 130:177e88.
Zhang B, Ji C, Wang S, Liu X. (2014a). Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogenemethanol blends under lean and various loads conditions. Energy; 74:829–35.
Zhang Z-H, Balasubramanian R. (2016). Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Appl Energy; 163:71–80.
Zhang T, Nilsson LJ, Björkholtz C, Munch K, Denbratt I. (2016a). Effect of using butanol and octanol isomers on engine performance of steady state and cold start ability in different types of Diesel engines. Fuel; 184:708–17.
Zhang ZH, Chua SM, Balasubramanian R. (2016b). Comparative evaluation of the effect of butanol–diesel and pentanol–diesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel; 176:40–7.
Zhen, Xudong & Wang, Yang. (2015). "An overview of methanol as an internal combustion engine fuel, " Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
Zheng Z.Q. C.L. Li, H.F. Liu, Y. Zhang, X.F. Zhong. (2015). Experimental study on dieselconventional and low temperature combustion by fueling four isomers of butanol, Fuel 141;109–119.

DB Error: Unknown column 'Array' in 'where clause'