Optimización del proceso de coagulación como pretratamiento de flotación por aire disuelto para la reducción de materia orgánica natural tratando agua del rio Ottawa

Contenido principal del artículo

Ben Othman
Juan Pablo González Galvis

Resumen

La materia orgánica natural (MON) afecta la calidad del agua produciendo problemas de color, olor y sabor en plantas de tratamiento de agua potable (PTAP). La remoción de la MON y turbiedad en PTAPs se lleva a cabo usando procesos de coagulación, floculación y clarificación. El objetivo de este estudio fue evaluar diferentes dosis de coagulante y diferentes valores de pH para encontrar los valores óptimos para la remoción de la MON usando flotación por aire disuelto (FAD) como proceso de clarificación a través de una prueba de jarras. Los resultados mostraron que la dosis óptima de coagulante para la reducción de la MON en términos de adsorción ultravioleta a 254 nanómetros (UV-254), carbono orgánico disuelto (COD) y color verdadero, fue de 30 mg/L como Al2O3 (2.73 mg Al/L) con un pH de 6.0. Sin embargo, la mejor reducción del índice específico de adsorción ultravioleta (SUVA) se presentó para un valor de pH de 5.0 con la misma dosis optima de coagulante de 30 mg/L como Al2O3.

Detalles del artículo

Cómo citar
Othman, B., & González Galvis, J. P. (2021). Optimización del proceso de coagulación como pretratamiento de flotación por aire disuelto para la reducción de materia orgánica natural tratando agua del rio Ottawa. L’esprit Ingénieux, 11(1), 73-86. Recuperado a partir de http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/2336
Sección
Artículos
Biografía del autor/a

Ben Othman

Egresado Ingeniería Civil, Universidad de Ottawa, Canadá.

Juan Pablo González Galvis

Ph.D. Ingeniería Ambiental, Universidad de Ottawa, Canadá, M.Sc. Ingeniería Civil, Universidad de los Andes,Bogotá, Esp. Ingeniería Ambiental, U.P.T.C, Constructor en Arquitectura e Ingeniería, Universidad Santo Tomás, Bogotá, Colombia. Áreas de Investigación y experiencia profesional: Procesos de coagulación, floculación, y clarificación usando sedimentación convencional, flotación por aire disuelto y floculación lastrada para la producción de agua potable. Tratamiento de aguas residuales domesticas e industriales con procesos aerobios y anaerobios usando tecnologías de biopelículas. Experiencia académica como profesor e investigador de tiempo completo en cursos de plantas de tratamiento de agua potable y residual, sistemas de alcantarillado, impacto ambiental y calidad del agua. Asistente de investigación y asistente de enseñanza, Departamento de Ingeniería Civil, Universidad de Ottawa, Canadá. Experiencia profesional de más de ochoaños como consultor ambiental en diseño de plantas de tratamiento de agua potable y residuales, sistemas de alcantarillado, construcción de vivienda de interés social y diseño y construcción de sistemas sépticosdispersos rurales. Docente Facultad de Ingeniería Civil, Universidad Santo Tomás Tunja.

Citas

Rapid‐mix design for mechanisms of alum coagulation. J. of the Am. Water Works Assoc., 74 (4), 210 – 216.

APHA/AWWA/WEF, (2012). Standard Methods for the Examination of Water and Wastewater. 22th ed. American Public Health Association. Washington, DC.

Camp, T. R. & Stein, P. C. (1943). Velocity gradients and internal work in fluid motion. Journal of the Boston Society of Civil Engineers, 30, 219 – 237.

Coetzee, P.P., Puka, R. & Mabenga, S., (2003). Characterisation of selected South African clays for defluoridation of natural waters. Water SA, 29 (3), 331−341.

Chu, W.H., Gao, N.Y., Templeton, R.M. & Yin, D. (2011). Comparison of inclined plate sedimentation and dissolved air flotation for the minimization of subsequent nitrogenous disinfection by-product formation. Chemosphere, 83, 647 – 651.

Droste, R.L., (1997). Theory and Practice of Water and Wastewater Treatment. John Wiley & Sons, New Jersey, NY.

Edzwald, J.K. & Haarhoff, J. (2012). Dissolved Air Flotation for Water Clarification. AWWA and Mcgraw-Hill, New York.

Edward, E. & Baruth., (2004). Water treatment plant design. American Water WorksAssociation McGraw-Hill, 9.48 – 9.69.

Edzwald, J.K., (2010). Dissolved air flotation and me. Water Research, 44, 2077 – 2106.

Edzwald, J.K., (1995). Principles and applications of dissolved air flotation. Water Science Technology, 31, pp. 1 – 23.

Edzwald, J.K., (1993). Coagulation in drinking water treatment: Particles, organics and coagulants. Water Science Technology, 27, 21 – 35.

Edzwald, J.K., Malley, Jr. P., (1990) Removal of humic substances and algae by dissolved air flotation. USEPA, 1 – 8.

Gregory, R., Zabel, T.F. & Edzwald, J.K. (1999). Sedimentation and Flotation. In: R.D. Letterman, ed. Water Quality and Treatment, McGraw-Hill Inc, New York.

Heinanen, J., Jokela, P., & Ala-Peijari, T., (1995). Use of Dissolved Air Flottation in potable Water Treatment in Finland, Water Science and Technology. 31, 225 – 238.

Indiana, G. (2011). Removal of natural organic matter to reduce the presence of trihalomethanes in drinking water. School of Chemical Science and Engineering, Royal Institute of Technology, Sweden. ISBN: 978-91-7415-856-4.

Kitchener, J. A. & Gochin, R.J. (1981). The mechanism of dissolved air flotation for potable water: basic analysis and a proposal. Water resources 15, 585 – 590.

Krofta, L. & Wang, L. K. (1982). Potable water treatment by dissolved air flotation and filtration. Journal of the American Water Works Association, 74, 305 – 310.

Matilainen, A., Vepsäläinen, M., Sillanpää, M., (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 159 (2), 189–97.

Marhaba, TF & Van, D., (2000). The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. Hazardous Mater. A74 133−147.

Marvin, R., (2005). Floating away: DAF removes algae, eases manganese issues, opflow. American water works association.

Metsamuuronen, S., Sillanpaa, M., Bhatnagar, A. & Manttari, M., (2013). Natural Organic Matter Removal from Drinking Water by Membrane Technology. Separation & Purification Review, 43, 1 - 61.

McArthur, JM., Banerjee, DM., Hudson-Edwards, KA., Mishra, R., Purohit, R., Ravenscroft P., Cronin, A., Hawarth, RJ., Chatterjee, A., Talukder, T., Lowry, D., Houghton, S. & Chadha, DK., (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water; the example of West Bengal and its worldwide implications. Appl. Geochem, 19, 1255−1293.

MWH. (2012). Water treatment: principles and design (2nd ed.). New Jersey, NY, John Wiley & Sons.

Nieuwenhuijsen, M. J.; Martinez, D.; Grellier, J.; Bennett, J.; Best, N.; Iszatt, N.; Vrijheid, M.; Toledano, M. B. (2009). Chlorination disinfection by-products in drinking water and congenital anomalies: Review and meta-analyses. Environ. Health Perspect, 117 (10), 1486−1493.

Nkambule T.I., Krause, RWM., Haarhoff J. & Mamba B.B., (2012). Natural organic matter (NOM) in South African waters: NOM characterisation using combined assessment techniques. Water SA, 38 (5).

Leloup, M., Nicolau, R., Pallier, V., Yepremian, C., Feuillade-Cathalifaud & Genevieve., (2013). Organic matter produced by algae and cyanobacteria: Quantitative and qualitative characterization. Environmental Sciences, 25(6), 1089 – 1097.

Lou, I., Gong, S., Xiangjun, H. & Yanjin, L. (2012). Coagulation optimization for low temperature and low turbidity source water using combined coagulants: a case study. Desalination and Water Treatment, 107 – 114.

Parsons, S. & Jefferson, B. (2006). Introduction to Potable Water Treatment Processes. Blackwell Publishing Ltd. Oxford, UK.

Rahman, M. B.; Driscoll, T.; Cowie, C.; Armstrong, B. K. (2010). Disinfection by-products in drinking water and colorectal cancer: A meta-analysis. Int. J. Epidemiol., 39 (3), 733−745.

Sillanpää, M., Ncibi, M.C., Matilainen, A. & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54 – 71.

Sinha, S., Amy, G. L. & Sohn, J. (1997). Reactivity of NOM fractions in forming chlorination DBPs. Presented at the AWWA Annual Conference, Atlanta, GA.

Sharp, E. L., Jarvis, P., Parsons, S. A., Jefferson, B., (2006). Impact of fractional character on the coagulation of NOM. Colloids Surf. A. Physicochem. Eng. Asp 286(1–3), 104–11.

Tan K.H., (2003). Humic matter in soil and the environment. Principles and controversies. Marcel Dekker Inc. ISBN: 0-8247-4272-9.

USEPA, (2012). Drinking water guidance on disinfection by-products. Advice note No 4. Version 2, from United States Environmental Protection Agency: Drinking Water. Cincinnati, USA.

Vanboon, GW. & Duffy, SJ., (2005). Environmental Chemistry: A Global Perspective (2nd ed.). Oxford University Press, New York, 257−320.

Van Beschoten, J. E., & Edzwald., (1990). Chemical aspects of coagulation using alum salts – I hydrolytic reactions of alum and polyaluminum chloride, Water Works Assoc, 24 (12), 1519 – 1526.

Xiao, F., Yi, P., Pan, X.R., Zhang, B.J. & Lee, C. (2010). Comparative study of the effects of experimental variables on growth rates of aluminum and iron hydroxide flocs during coagulation and their structural characteristics. Desalination, 250, 902– 907

Artículos más leídos del mismo autor/a

Nota: Este módulo requiere de la activación de, al menos, un módulo de estadísticas/informes. Si los módulos de estadísticas proporcionan más de una métrica, selecciona una métrica principal en la página de configuración del sitio y/o en las páginas de propiedades de la revista.