Predicción del Comportamiento de Puentes Peatonales debido a la Actividad Humana, usando Modelos de Computador
Contenido principal del artículo
Resumen
El presente artículo tiene como fin describir la evaluación de las vibraciones causadas por la actividad humana sobre un puente peatonal, usando software comercial de manejo diario en las oficinas de ingeniería. Con esto se busca obtener resultados más confiables para formas irregulares y estructuras complejas, ya que los métodos empleados en la actualidad por algunas firmas no describen de manera correcta el fenómeno. En el artículo se da una breve introducción al problema de las vibraciones de baja frecuencia: se describe cómo estas son generadas por el caminar humano y, a su vez, afectan la estructura del puente peatonal. Luego, de manera somera y conceptual, se explica el método comúnmente usado por los ingenieros para la evaluación del efecto de las vibraciones y las limitaciones este. Finalmente se procede a describir cómo mediante el uso del software SAP2000® y la realización de buenas técnicas de modelación y elementos finitos es posible obtener resultados confiables y que acompañen de manera directa el proceso de diseño.
Detalles del artículo
Cómo citar
Cala, J., & Villar, K. (2017). Predicción del Comportamiento de Puentes Peatonales debido a la Actividad Humana, usando Modelos de Computador. L’esprit Ingénieux, 7(1). Recuperado a partir de http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/1369
Sección
Artículos L´esprit Ingenieux Vol.7
Citas
Allen, D. E. y Murray, T. M. (1993). Design criterion for vibrations due to walking. AISC Engineering Journal, 30(4), 117-129.
Alvis, S.R. (2001). An experimental and analytical investigation of floor vibrations (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Bachmann, H. et al. (1995). Vibration problems in structures: practical guidelines. Basel: Birkhäuser Verlaug.
Band, B. S. Jr. (1996). Several vibration performance aspects of joist and joist-girder supported floors (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Beavers, T. A. (1998). Fundamental natural frequency of steel-joist supported floors (tesis de maestría). Blacksburg: Polytechnic Institute
and State University.
Blakeborough, A. y Williams, M. S. (2003). Measurement of floor vibrations using a heel drop test. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 156, 367-371.
Boice, M. D. (2003). Study to improve the predicted response of floor systems due to walking (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Computers & Structures (2004). SAP2000: Linear and nonlinear static and dynamic analysis and design of three-dimensional structures. User's Manual. Berkeley: Autor.
Davis, D. B. y Murray, T. M. (2007). Comparisons of measured natural frequencies and walking accelerations to design guide predictions. Proceedings of the experimental vibration analysis for civil engineering structures. Porto.
El-Dardiry, E., Wahyuni, E., Ji, T. y Ellis, B.R. (2002). Improving FE models of a long-span flat concrete floor using frequency measurements. Computers and Structures, 80, 2145-2156.
Ellingwood, B. (1989). Service ability guide lines for steel structures. AISC Engineering Journal, 26(1), -8.
Falati, S. (1999). The contribution of nonstructural components to the overall dynamic behaviour of concrete floor slabs (tesis doctoral). Oxford: Universidad de Oxford.
Griffin, M. J. (1990). Handbook of human vibrations. Londres: Elsevier Press.
Hanes, R. M. (1970). Human sensitivity to whole-body vibration in urban transportation systems: a literature review. Maryland: The John Hopkins University.
Hicks, S. J., Lawson, R. M. y King, C. M. (2000). SCI RT803: Design guide for vibrations of long span composite floors. Ascot: Steel Construction Institute.
Kerr, S. C. (1998). Human induced loading on staircases (tesis de doctorado). Londres: Universidad de Londres.
Murray, T. M. (1979). Acceptability criterion for occupant-induced floor vibrations. Recuperado de http://goo.gl/3KZgZQ
Murray, T. M. (1991). Building floor vibrations. AISC Engineering Journal, 28(3), 102-109.
Murray, T. M., Allen, D. E. y Ungar, E. E. (1997). Steel Design Guide Series 11: Floor vibrations due to human activity. Chicago, Illinois: American Institute of Steel Construction (AISC).
Murray, T. M. y Boice, M. D. (2006). How accurate are current floor vibration procedures. Chicago, Illinois: American Institute of Steel Construction (AISC).
Organización Internacional de Normalización (1989). Evaluation of human exposure to wholebody vibration. Part 2: Human exposure to continuous and shock-induced vibrations in buildings (1 to 80 Hz). International Standard ISO 2631-2.
Pavic, A. y Reynolds, P. (1999). Experimental assessment of vibration serviceability of existing office floors under human-induced excitation. Experimental Techniques, 23(5), 41-45.
Perry, J. D. (2003). A study of computer modeling techniques to predict the response of floor systems due to walking (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Rainer, J. H. y Swallow, J. C. (1986). Dynamic behavior of a gymnasium floor. Canadian Journal of Civil Engineering, 13, 270-277.
Reynolds, P. y Pavic, A. (2000a). Impulse hammer versus shaker excitation for the modal testing of building floors. Experimental Techniques, 24(3), 39-44.
Reynolds, P. y Pavic, A. (2000b). Quality assurance procedures for the modal testing of building floor structures. Experimental Techniques, 24(4), 36-41.
Sladki, M.J. (1999). Prediction of floor vibration response using the finite element method. Blacksburg: Polytechnic Institute and State University.
Young, P. (2001). Improved Floor Vibration Prediction Methodologies. Proceedings of Arup Vibration Seminar on Engineering for Structural Vibration Current Developments in Research and Practice. Londres: Institution of Mechanical Engineers.
Willford, M. y Young, P. (2006). A design guide for footfall induced vibration of structures. The Concrete Centre Publication, 8(12).
Willford, M., Field, C. y Young, P. (2006). Improved Methodologies for the Prediction of Footfall-Induced Vibration. Proceedings of the 2006 Architectural Engineering National Conference, ASCE. Reston, Virginia.
Alvis, S.R. (2001). An experimental and analytical investigation of floor vibrations (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Bachmann, H. et al. (1995). Vibration problems in structures: practical guidelines. Basel: Birkhäuser Verlaug.
Band, B. S. Jr. (1996). Several vibration performance aspects of joist and joist-girder supported floors (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Beavers, T. A. (1998). Fundamental natural frequency of steel-joist supported floors (tesis de maestría). Blacksburg: Polytechnic Institute
and State University.
Blakeborough, A. y Williams, M. S. (2003). Measurement of floor vibrations using a heel drop test. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 156, 367-371.
Boice, M. D. (2003). Study to improve the predicted response of floor systems due to walking (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Computers & Structures (2004). SAP2000: Linear and nonlinear static and dynamic analysis and design of three-dimensional structures. User's Manual. Berkeley: Autor.
Davis, D. B. y Murray, T. M. (2007). Comparisons of measured natural frequencies and walking accelerations to design guide predictions. Proceedings of the experimental vibration analysis for civil engineering structures. Porto.
El-Dardiry, E., Wahyuni, E., Ji, T. y Ellis, B.R. (2002). Improving FE models of a long-span flat concrete floor using frequency measurements. Computers and Structures, 80, 2145-2156.
Ellingwood, B. (1989). Service ability guide lines for steel structures. AISC Engineering Journal, 26(1), -8.
Falati, S. (1999). The contribution of nonstructural components to the overall dynamic behaviour of concrete floor slabs (tesis doctoral). Oxford: Universidad de Oxford.
Griffin, M. J. (1990). Handbook of human vibrations. Londres: Elsevier Press.
Hanes, R. M. (1970). Human sensitivity to whole-body vibration in urban transportation systems: a literature review. Maryland: The John Hopkins University.
Hicks, S. J., Lawson, R. M. y King, C. M. (2000). SCI RT803: Design guide for vibrations of long span composite floors. Ascot: Steel Construction Institute.
Kerr, S. C. (1998). Human induced loading on staircases (tesis de doctorado). Londres: Universidad de Londres.
Murray, T. M. (1979). Acceptability criterion for occupant-induced floor vibrations. Recuperado de http://goo.gl/3KZgZQ
Murray, T. M. (1991). Building floor vibrations. AISC Engineering Journal, 28(3), 102-109.
Murray, T. M., Allen, D. E. y Ungar, E. E. (1997). Steel Design Guide Series 11: Floor vibrations due to human activity. Chicago, Illinois: American Institute of Steel Construction (AISC).
Murray, T. M. y Boice, M. D. (2006). How accurate are current floor vibration procedures. Chicago, Illinois: American Institute of Steel Construction (AISC).
Organización Internacional de Normalización (1989). Evaluation of human exposure to wholebody vibration. Part 2: Human exposure to continuous and shock-induced vibrations in buildings (1 to 80 Hz). International Standard ISO 2631-2.
Pavic, A. y Reynolds, P. (1999). Experimental assessment of vibration serviceability of existing office floors under human-induced excitation. Experimental Techniques, 23(5), 41-45.
Perry, J. D. (2003). A study of computer modeling techniques to predict the response of floor systems due to walking (tesis de maestría). Blacksburg: Polytechnic Institute and State University.
Rainer, J. H. y Swallow, J. C. (1986). Dynamic behavior of a gymnasium floor. Canadian Journal of Civil Engineering, 13, 270-277.
Reynolds, P. y Pavic, A. (2000a). Impulse hammer versus shaker excitation for the modal testing of building floors. Experimental Techniques, 24(3), 39-44.
Reynolds, P. y Pavic, A. (2000b). Quality assurance procedures for the modal testing of building floor structures. Experimental Techniques, 24(4), 36-41.
Sladki, M.J. (1999). Prediction of floor vibration response using the finite element method. Blacksburg: Polytechnic Institute and State University.
Young, P. (2001). Improved Floor Vibration Prediction Methodologies. Proceedings of Arup Vibration Seminar on Engineering for Structural Vibration Current Developments in Research and Practice. Londres: Institution of Mechanical Engineers.
Willford, M. y Young, P. (2006). A design guide for footfall induced vibration of structures. The Concrete Centre Publication, 8(12).
Willford, M., Field, C. y Young, P. (2006). Improved Methodologies for the Prediction of Footfall-Induced Vibration. Proceedings of the 2006 Architectural Engineering National Conference, ASCE. Reston, Virginia.