Métodos para Mitigar la Corrosión por Ácido Sulfúrico Biogenico en los Sistemas de Alcantarillado

Contenido principal del artículo

Melquisedec Cortes
Marian Avella
Oscar Rojas

Resumen

La corrosión es un proceso inminente en la naturaleza que afecta a materiales de todo tipo. En los sistemas de alcantarillado se ha venido estudiando el proceso de corrosión inducida por microorganismos, también conocida como el ataque del ácido sulfúrico biogénico, que afecta la integridad estructural de los colectores de concreto y las plantas de tratamiento de aguas residuales. En este contexto, se han investigado tres métodos para controlar y mitigar este proceso: a) el control del sulfuro de hidrógeno, b) la implementación de aditivos y recubrimientos en el concreto y c) los métodos antimicronianos. Este artículo resume una revisión de las investigaciones que se han enfocado a estudiar cómo reducir la producción del sulfuro de hidrógeno y mejorar la resistencia del concreto por medio de aditivos y de la implementación de técnicas antimicrobianas para disminuir el crecimiento de las bacterias.

Detalles del artículo

Cómo citar
Cortes, M., Avella, M., & Rojas, O. (2017). Métodos para Mitigar la Corrosión por Ácido Sulfúrico Biogenico en los Sistemas de Alcantarillado. L’esprit Ingénieux, 7(1). Recuperado a partir de http://revistas.ustatunja.edu.co/index.php/lingenieux/article/view/1365
Sección
Artículos L´esprit Ingenieux Vol.7

Citas

Aydin, S., Yazici, H., Yigiter, H. y Baradan, B. (2007). Sulfuric acid resistance of high-volume fly ash concrete. Building and Environment,
42(2), 717-721. Doi: 10.1016/j.buildenv.2005.10.024

Bassuoni, M. T. y Nehdi, M. L. (2007). Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cement and Concrete Research, 37(7), 1070-1084. Doi: 10.1016/j.cemconres.2007.04.014

Beving, D. E., O'Neill, C. R. y Yan, Y. (2008). Hydrophilic and antimicrobial low-silica-zeolite LTA and high-silica-zeolite MFI hybrid coatings on aluminum alloys. Microporous and Mesoporous Materials, 108(1-3), 77-85. Doi: 10.1016/j.micromeso.2007.03.029

Chen, G.-H. y Leung, D. H. (2000). Utilization of oxygen in a sanitary gravity sewer. Water Research, 34(15), 3813-3821. Doi: 10.1016/S0043-1354(00)00143-3

De Muynck, W., De Belie, N. y Verstraete, W. (2009). Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete. Cement and Concrete Composites, 31(3), 163-170. Doi: 10.1016/j.cemconcomp.2008.12.004

Espinosa Márquez, J., Revah, S. y Le Borgne, S. (2010). Rutas metabólicas de oxidación del azufre en bacterias quimiolitoautótrofas,
relevancia ambiental y biotecnología. Mensaje Bioquímico, 34, 101-120.

Girardi, F. y Maggio, R. D. (2011). Resistance of concrete mixtures to cyclic sulfuric acid exposure and mixed sulfates: Effect of the type of aggregate. Cement and Concrete Composites, 33(2), 276-285. Doi: 10.1016/j.cemconcomp.2010.10.015

Girardi, F., Vaona, W. y Di Maggio, R. (2010). Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cement and Concrete Composites, 32(8), 595-602. Doi: 10.1016/j.cemconcomp.2010.07.002

Gutierrez, O., Sudarjanto, G., Ren, G., Ganigué, R., Jiang, G. y Yuan, Z. (2014). Assessment of pH shock as a method for controlling sulfide and
methane formation in pressure main sewer systems. Water Research, 48(0), 569-578. Doi: 10.1016/j.watres.2013.10.021

Haile, T., Nakhla, G. y Allouche, E. (2008). Evaluation of the resistance of mortars coated with silver bearing zeolite to bacterial-induced corrosion. Corrosion Science, 50(3), 713-720. Doi: 10.1016/j.corsci.2007.08.012

Haile, T., Nakhla, G., Allouche, E. y Vaidya, S. (2010). Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes. Corrosion
Science, 52(1), 45-53. Doi: 10.1016/j.corsci.2009.08.046

Hernández, M., A. Marchand, E., Roberts, D. y Peccia, J. (2002). In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. International Biodeterioration &
Biodegradation, 49(4), 271-276. Doi: 10.1016/S0964-8305(02)000549

Hvitved-Jacobsen, T., Vollertsen, J. y Matos, J. S. (2002). The sewer as a bioreactor - a dry weather approach. Water Sci. Technol., 45(3), 11-24.

Jiang, G., Keating, A., Corrie, S., O'Halloran, K., Nguyen, L. y Yuan, Z. (2013). Dosing free nitrous acid for sulfide control in sewers: Results of field trials in Australia. Water Research, 47(13), 4331-4339. Doi: 10.1016/j.watres.2013.05.024

Joorabchian, S. M. (2010). Durability of concrete exposed to sulfuric attack. Toronto: Ryerson University. Li, G., Xiong, G., lü, Y. y Yin, Y. (2009). The physical and chemical effects of long-term sulphuric acid exposure on hybrid modified cement mortar. Cement and Concrete
Composites, 31(5), 325-330. Doi: 10.1016/j.cemconcomp.2009.02.014

Liu, H.-L., Lan, Y.-W. y Cheng, Y.-C. (2004). Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface
methodology. Process Biochemistry, 39(12), 1953-1961. Doi: 10.1016/j.procbio.2003.09.018

Liu, J. y Vipulanandan, C. (2001). Evaluating a polymer concrete coating for protecting nonmetallic underground facilities from sulfuric acid attack. Tunnelling and Underground Space Technology, 16(4), 311-321. Doi: 10.1016/S0886-7798(01)00053-0

Makhloufi, Z., Kadri, E. H., Bouhicha, M. y Benaissa, A. (2012). Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Construction and Building Materials, 26(1), 497-504. Doi: 10.1016/j.conbuildmat.2011.06.050

Massol, A. (s. f.). Nutrientes y gases: azufre. Recuperado de http://goo.gl/nxzJxE

Monteny, J., De Belie, N., Vincke, E., Verstraete, W. y Taerwe, L. (2001). Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 31(9), 1359-
1365. Doi: 10.1016/S0008-8846(01)00565-8

Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D. y Verstraete, W. (2000). Chemical, microbiological, and in situ
test methods for biogenic sulfuric acid corrosion of concrete. Cement and Concrete Research, 30(4), 623-634. Doi: 10.1016/S0008-8846(00)00219-2

Nica, D., Davis, J. L., Kirby, L., Zuo, G. y Roberts, D. J. (2000). Isolation and characterization of microorganisms involved in the biodeterioration
of concrete in sewers. International Bio deterioration & Biodegradation, 46(1), 61-68. Doi: /10.1016/S0964-8305(00)00064-0

O'Connell, M., McNally, C. y Richardson, M. G. (2010). Biochemical attack on concrete in wastewater applications: A state of the art review. Cement and Concrete Composites, 32(7), 479-485. Doi: 10.1016/j.cemconcomp.2010.05.001

O'Connell, M., McNally, C. y Richardson, M. G. (2012). Performance of concrete incorporating GGBS in aggressive wastewater environments.
Construction and Building Materials, 27(1), 368-374. Doi: 10.1016/j.conbuildmat.2011.07.036

Pacheco-Torgal, F. y Jalali, S. (2009). Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes. Construction and
Building Materials, 23(12), 3485-3491. Doi: 10.1016/j.conbuildmat.2009.08.001

Pérez Sanz, D. (2007). El efecto corona en la red de saneamiento del Área Metropolitana de Barcelona. Cataluña: Universitat Politècnica de
Catalunya.

Peyvandi, A., Soroushian, P., Balachandra, A. M. y Sobolev, K. (2013). Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Construction and Building
Materials, 47(0), 111-117. Doi: 10.1016/j.conbuildmat.2013.05.002

Roberts, D. J., Nica, D., Zuo, G. y Davis, J. L. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration & Biodegradation, 49(4), 227-234. Doi: 10.1016/S0964-8305(02)00049-5

Sand, W. (2008). Microbial corrosion and its inhibition biotechnology set. S. l: Wiley.

Saricimen, H., Shameem, M., Barry, M. S., Ibrahim, M. y Abbasi, T. A. (2003). Durability of proprietary cementitious materials for use in wastewater transport systems. Cement and Concrete Composites, 25(4-5), 421-427. Doi: 10.1016/S0958-9465(02)00082-3

Soleimani, S., Isgor, O. B. y Ormeci, B. (2013). Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure. Cement and Concrete Research, 53(0), 229-238. Doi: 10.1016/j.cemconres.2013.06.016

Starosvetsky, J., Zukerman, U. y Armon, R. H. (2013). A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples. Journal of
Microbiological Methods, 92(2), 178-182. Doi: 10.1016/j.mimet.2012.11.009

Vaidya, S. y Allouche, E. N. (2010). Electrokinetically deposited coating for increasing the service life of partially deteriorated concrete sewers. Construction and Building Materials, 24(11), 2164-2170. Doi: 10.1016/j.conbuildmat.2010.04.042

Vincke, E. (2002). Biogenic sulfuric acid corrosion of concrete: microbial interaction, simulation and prevention (tesis de doctorado). Gante, Bélgica: Universidad de Gante. Vincke, E. et al. (2002). Influence of polymer addition on biogenic sulfuric acid attack of concrete. International Biodeterioration & Biodegradation, 49(4), 283-292. Doi: 10.1016/S0964-8305(02)00055-0

Vipulanandan, C. y Liu, J. (2002). Glass-fiber mat-reinforced epoxy coating for concrete in sulfuric acid environment. Cement and
Concrete Research, 32(2), 205-210. Doi: 10.1016/S0008-8846(01)00660-3

Vipulanandan, C. y Liu, J. (2005). Performance of polyurethane-coated concrete in sewer environment. Cement and Concrete Research, 35(9), 1754-1763. Doi: 10.1016/j.cemconres.2004.10.033

Yamanaka, T. et al. (2002). Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth. Water Research, 36(10), 2636-2642. Doi: 10.1016/S0043-1354(01)00473-0

Yousefi, A., Allahverdi, A. y Hejazi, P. (2014). Accelerated biodegradation of cured cement paste by Thiobacillus species under simulation condition. International Biodeterioration & Biodegradation, 86, Part C(0), 317-326. Doi: 10.1016/j.ibiod.2013.10.008

Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N. y Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42(1-2), 1-12. Doi: 10.1016/j.watres.2007.07.013