
6 - INGENIO MAGNO

Resumen— Debido al gran volumen de información que fluye a
través de Internet, las marcas de agua se utilizan ampliamente para
proteger la autenticidad e integridad de la información. La inserción
y la extracción de marcas de agua se pueden hacer en el dominio
espacial o de otros dominios de frecuencia, como la Transformada
Discreta del Coseno (DCT) y la Transformada Discreta Wavelet (DWT).
La inserción y la extracción en dominios como DCT tienen un gran
costo computacional en comparación con los métodos espaciales.
Sin embargo, el proceso de marcas de agua en el dominio de la
frecuencia tiene mejores resultados en calidad y robustez debido al
uso de coeficientes no correlacionados. En este trabajo, se propone
utilizar una unidad de procesamiento gráfico (GPU) para reducir
el costo computacional de la inserción y extracción de los bits de
la marca de agua en el dominio de DCT. Se propone, para tomar
ventaja de los bloques generados después de la DCT, asignar la
misma configuración de bloques en la GPU. También se hace uso
de los diferentes tipos de memoria, como la constante y compartida,
para optimizar el uso de los recursos del GPU. Los experimentos
evalúan el desempeño de la marca de agua en la GPU, y muestran
que el algoritmo que se ejecuta en la GPU es hasta 6 veces más
rápido en comparación con el ejecutado en el CPU, aun tomando en
consideración el tiempo que lleva transferir datos desde la memoria
RAM a la memoria de la GPU.

Palabras clave— CUDA, GPU, watermarking, authenticate the
information, copyright, invisible watermark.

Abstract— Due to the vast volume of infor-
mation flowing on the Internet, watermarking
is widely used to protect information authen-
ticity and integrity. Watermarking embedding
and extraction can be done in spatial domain
or other frequency domains like Discrete Co-
sine Transform (DCT) and Discrete Wavelet
Transform (DWT). The embedding and extrac-
tion process for domains like DCT have higher
computational cost compared to spatial based
methods. However the frequency domain wa-
termarking results in better watermark quality
and robustness due to the use of uncorrelated
coefficients. In this paper, it is proposed to uti-
lize a Graphics Processing Unit (GPU) to redu-
ce the computational cost of the insertion and
extraction of the watermark bits using DCT
domain. It is also proposed to take advantage
of the blocks generated after the DCT to map
them into the same configuration of blocks on
the GPU. The proposed approach uses diffe-
rent types of memory, the constant and sha-
red, in order to optimize the GPU’s resources.
Experiments evaluate the performance of the
watermarking in the GPU, and show that the
algorithm running in the GPU is up to 6 times
faster compared to CPU implementation, even
considering the time taken for transferring data
from the RAM memory to the GPU memory.

Keywords— CUDA, GPU, watermarking,
authenticate the information, copyright, invi-
sible watermark.

García-Cano C. Edgar,
– Rabil Bassem S. – Sabourin Robert
Universidad Nacional Autónoma de
México - Universidad de Quebec –

Canada.

Recepción: 2012-07-13 | Aceptación: 2012-09-10

Para citar este artículo / To reference this article / Para citar este artigo
García, C. E, Rabil, B. S, Sabourin, R (2012). A parallel watermarking
application on a GPU. Ingenio Magno. Vol.3, pp. 6 - 15. Universidad

Santo Tomás Tunja - CIIAM.

A Parallel

Watermarking
application on a Gpu

 INGENIO MAGNO - 7

I. Introduction

Nowadays with the use of Internet it is
important —as common users— to
have a way to protect our information

such as documents, videos, images, music,
etc. In the industry it is important to protect
the authenticity of their documents with
copyright in order to secure its information
and the one from consumers or customers;
here is where the watermarks make sense as
a way to protect it.

Computers have been improved in order
to compute a huge quantity of information;
however, it is kind of difficult to have easy
access to supercomputers or clusters to
process it; that is why the massive parallelism
on Graphics Processing Units (GPU) for
general-purpose problems has arrived as
a cheap and feasible solution to accelerate
the process. The Compute Unified Device
Architecture (CUDA architecture) created
by NVIDIA, has arrived with the objective of
accelerate general-purpose problems taking
advantage of the massive parallelism in its
new paradigm (NVIDIA, 2012).

Thread level parallelization model is based on
the idea of having as many threads as possible
working continually in order to take advantage
of the GPU resources. Using this scheme, the
proposed system takes one image, splits it
in accordance with the DCT algorithm, and

maps it to the GPU’s global memory. From
here, different GPU execution configurations
are used to execute the operations needed
for the watermarking algorithm, depending
on the requirements of each one; besides
the shared memory is applied to avert over-
reading into the global memory.

The main objective of the proposed system
is to handle a huge quantity of digital
information; specifically images in gray scale
JPG format, to authenticate the information
using a watermarking algorithm, and to
process it faster sing modest computational
resources and utilizing a GPU to accelerate
this process.

The paper is organized as follows: section 2
gives an explanation about what watermarking
is, its different types, the metrics to evaluate
the quality of a watermarked image, and
previous work in watermarking images. In
section 3, the GPU watermarking proposed
system is presented. Section 4 explains the
experimental study and results. Finally, the
conclusions are presented in section 5.

EL proyecto de investigación consiste en la
búsqueda y selección adecuada y prueba de
técnicas, herramientas, protocolos y demás
recursos tecnológicos que permitan modelar
el sistema teniendo en cuenta los recursos
temporales, físicos, servicios humanos y el
impacto social.

8 - INGENIO MAGNO

II. Related Work

In images, a watermark is a pattern inserted in the image
that helps to copyright it. There are two ways to apply
the watermarking in images. The first one is called visible
watermark. The characteristic of this type is that you can
see the watermark over the image like a logo or a sign;
it is common to see images on Internet where you can
see logos or signs over them, or in TV shows it is usual
to see the broadcaster’s logo. The second one is the
invisible watermarking. This type cannot be perceived by
human eyes, and to insert or extract it is necessary to use
electronic devices (AlpVision, 2012).

There have been other works in which GPUs have
been used in watermarking, like the ones of Brunton &
Zhao, (2006), Zhao & Yang (2011), and Vihari & Mishra
(2012). The first one was applied for real-time video
watermarking, while the other two were applied to image
watermarking. Zhao & Yang used features extracted from
the low and middle frequency domain of DCT coefficients
to embed them into the high frequency domain, and Vihari
& Mishra’s work based on Huffman Coding for encoding
the copyright data, and to embed it they made use of the
Modified Auxiliary Carry Watermarking method.

A. Watermarking Metrics

In the digital framework, watermarking algorithms that
make use of information hiding techniques have been
developed, and hiding capacity has naturally been used
as a metric in evaluating their power to hide information
(the maximal amount of information that a certain
algorithm can “hide” keeping the data within allowable
distortion bounds). In literature, the next metrics had been
used in order to evaluate the quality of the watermarking
(Ramesh, Shanmugam, & Gomathy, 2011). This paper is
focused on the parallel implementation of a watermarking
algorithm on GPUs, and the most commonly used metrics
to evaluate it. This work could be extended further in the
future for more metrics.

1) Watermark Fidelity

The fidelity represents the similarity of the watermarked
image with the original image. Peak Signal to Noise Ratio
(PSNR) is commonly used to evaluate image degradation
or reconstruction fidelity (National Instruments , 2012). It is
defined for two images I and K of size MxN as:

					 (1)

Where I is the original image, K is a reconstructed or noise
approximation, 2552 is the maximum pixel value in image
I, and MSE is a mean squared error between I and K.

 (2)

PSNR is expressed in decibel scale. In image reconstruction
typical values for PSNR vary within the range [30, 50]. A
PSNR value of 50 and higher calculated from two images
that were processed on diverse devices with the same
algorithm indicates that the results are practically identical.

2) Watermark Robustness

The robustness represents the resistance of the watermark
against attacks like compression, rotation, scaling,
etc., done on the watermarked image. The Normalized
Correlation (NC) is used to measure the robustness
between the original watermark and the extracted
watermark. When different attacks have been applied to
a watermarked image, the NC is calculated between the
embedded watermark W(i,j) and the extracted watermark
from the attacked image W’(i,j), where both watermarks
have the same dimensions MwxNw.

 (3)

B. Watermark Embedding/Extraction Algorithm

In order to develop the application, it was decided
to implement a watermarking algorithm proposed by
Shieh, Huang, Wang, & Pan, (2004). This algorithm is
used because it is a blind algorithm, which means that
it is not necessary to have the original cover to extract
the watermark. This algorithm is based on the Discrete
Cosine Transformation (DCT). The DCT divide the picture
in blocks of 8x8 with well-defined frontiers, this feature
helps to map every block of the image in a block on the
GPU to process over it.

Initially to insert the watermark, the image X of size MxN to
be watermarked is split into 8 x 8 blocks to perform DCT on
these blocks, generating the matrix Y(m.n)(k). This resultant
matrix has the upper left corner, as DC coefficient and the
rest of the matrix are the AC coefficients, where the DCT
coefficients are zigzag ordered as seen in figure 1.

 INGENIO MAGNO - 9

Figure 1. The ma-
trix of the zigzag
ordered DCT coef-
ficients. Each Y(m,n)(k)
is a frequency band
where the water-
mark bits could be
inserted.

Figure 2. Steps of the embedding and extraction algorithm
proposed by Shieh et al. (2004).

Figura 4. Metodología Diseño VRML efectivo
 Fuente: Autor del proyecto

The transformed matrix Y(m,n)(k) is then used to get the ratio
matrix between the DC and the AC coefficients R(i) using
(4).

 (4)

Then the polarities matrix P(m,n)(i) is calculated applying (5).

 (5)

Next, assuming that the binary watermark is W(m,n), the
watermarked DCT coefficient Y ‘ is obtained using (6).

 (6)

After that, the watermarked image Xc is obtained by using
the inverse DCT for Y’.

When extracting the watermarks, the original image X
is not required in our algorithm. However, the optimized
watermarked image might be subjected to some
intentional or unintentional attack, and the resulting image
after the attack is represented by X’’. We calculate the
DCT of the watermarked image after attacking Y’’. We
then reproduce the estimated reference table R’ from the
attacked X’’ by following the operations in (7), and we are
able to extract the watermark W’(m,n),

 (7)

 (8)

This watermarking algorithm has many computationally
complex processing steps just for one image; however in
real life it is crucial to be able to work with a huge quantity
of files, and to process them as soon as possible to satisfy
the consumers. In order to solve these requirements,
CUDA architecture becomes a solution to accelerate the
process at a low cost. Figure 2 shows the general process
steps of the algorithm proposed by Shieh et al. (2004) to
embed and extract the watermark.

III. GPU Based watermarking

The system is based on the idea of parallelizing all the
operations involved in the watermarking algorithm using
CUDA architecture, in order to accelerate the process.

Using an image of size 512x512 as an input, it is possible
to divide it in 64x64 blocks as in the DCT. The 64x64
matrix is easily mapped to the same number of blocks in
the GPU, and the configuration of the threads will depend
on the type of operation to be executed. The limitation
with the image is the size, due to the fact that the GPU

10 - INGENIO MAGNO

has a limitation in the data quantity that it can
store in the different type of memories.

Respecting the thread configuration, for
example, to compute one operation that
requires comparing a [512x512] watermarked
image with the original one; in a sequential
form, if every comparison consumes 1 second
to be executed 262,144 seconds would be
required to complete the comparison. Using
a GPU, 64x64 blocks are generated, and
each of them have 64 threads, in total there
are 262,144 threads working in parallel doing
one comparison, consuming just 1 second to
complete all of them (theoretically).

CUDA architecture is based on block
components called streaming multiprocessor
(SM), and depends on the number of
them; you can create applications that
could run on hardware with different prices
and performances. The scheduler is the
responsible of assigning one or more blocks
of threads on each SM, depending on how
many blocks and threads a SM can support;
this is called compute capability. It ought
to be taken in account that the number
precision representation changes with the
different compute capabilities, which can be
seen reflected in the outcomes.

The code that is going to run in parallel on
the device needs to be written in functions
called kernels. These functions indicate to
the compiler that the code will run on the
GPU. The kernels are executed in the order
in which they were launched, and if the SMs
are free to work in their next duty. The way
the kernel has to be coded to take advantage
of the parallelism depends on execution
configuration; this is where blocks and
threads are set out in order to have done its
work (Sanders & Kandrot, 2010). Therefore,
the configuration of the blocks and threads
for an application on a GPU must be carefully
analyzed.

Other point of consideration in the use of
the GPUs is the memory treatment. In this
application the global memory was used to
put up the image and the watermark data, the
ratio and polarities matrices. This memory is
used to carry the data from the host (RAM
memory) to the device (GPU memory) and
vice versa. The problem of using it is the long
time it spends in the transfer depending on
the amount of data. Another type of memory

used in this application was the shared
memory. This memory is used just inside the
blocks and it is not visible between others,
which, unlike the global memory is visible for
all the blocks. The shared memory is faster
than the global memory; the problem with
it is the size, the handling and the overall
synchronization with the threads.

Following with the previous explanation,
a 128x128 binary watermark image to be
inserted into a 512x512 gray scale image
is considered. It is necessary to load the
image into the GPU memory and to apply
the DCT. In order to take advantage of the
parallelism, a library with this function
provided by CUDA was used (Obukhov &
Kharlamov, 2008). After applying the DCT to
the 512x512 image, a matrix of 64x64 blocks
representing the image is obtained. Each
block is divided at the same time into 8x8
frequency bands where the watermark will be
inserted. The configuration of 64x64 blocks is
maintained in the GPU for all the operations,
each block in the GPU represents one block
of the image after the DCT; what differs in the
GPU is the configuration of the threads that
depends on the need of the operation to be
executed. For instance, in the calculation of
the NC there were required just 4 threads to
do the comparisons, but in the case of the
MSE 64 threads working at the “same time”
were required.

Figure 3. The watermarked image, and the watermark mapping to GPU.

 INGENIO MAGNO - 11

Figure 4. Image block
organization.

As shown in figure 3, the data of the
watermark image are inserted uniformly in
the original image and in different frequency
bands in order to have the new image with
the hidden watermark. These bands are
randomly selected and they could be different
from block to block resulting with different
MSE and NC values from test to test. NVIDIA
provides a library used to generate the
random numbers in the GPU, and to keep
them in the constant memory in order to be
used by any process (NVIDIA, 2010).

Finally, to complete the process it is important
to implement a barrier to be sure that the
routines have finished their work in the GPU;
using synchronization helps to be sure that
the process is going to be finished. On the
other hand, CUDA runtime system is in
charge of assigning the resources used for
the different blocks to be executed. Putting
together these features, CUDA provides
the flexibility to run the implementation with
different hardware resources, being aware of
the memory and cores limitations of low-cost
GPUs, which could affect the performance of
the application. Figure 5 shows the steps to
execute the embedding/extraction algorithm
on the GPU.

IV. Experimental Study

In order to propose a simpler way to measure the
fitness and the robustness spending the shortest
time possible, the MSE was taken from the PSNR
and the NC was changed. When measuring the MSE
in each block, just 64 comparisons are needed and
they are executed at the “same time” in the other
blocks. In the sequential process there are needed

Figure 5. Steps of the embedding and extraction algorithm
proposed by Shieh et al. (2004) on the GPU.

12 - INGENIO MAGNO

512x512 evaluations, one after another for
a 512x512 image size. The same case was
applied for the NC, where it is computed
for each block, instead of being calculated
for the whole image as in a sequential
form.

The NC and the MSE are computed for each
8x8 block as shown in figure 4. This was done
with the purpose of dividing the data in the GPU
as efficiently as possible. In order to calculate
the fidelity, it is necessary just to compare
block by block how much the original image
changes in contrast with the watermarked
one. If the MSE value is zero, then it means
that the block has not changed at all. As you
can see, it is not necessary to calculate the
PSNR if it is possible to obtain the same image
fidelity calculation by just using MSE.

In the case of NC (for robustness), a variation
of it was calculated. The bitwise operations
are faster than a multiplication, which is why
applying one of them reduces the runtime. In
order to reduce the runtime in the evaluation
of the NC, the logical operation “exclusive
disjunction”, also called exclusive or was
used. The NC value must be close to zero
between the original watermark W and the
extracted watermark W’, to prevent the loss
of the watermark image information.

Figure 4 shows in big scale how the blocks of
the image after the DCT are organized. For each
8x8 block, the MSE and the NC are calculated.
If the MSE and the NC values are close to zero,
it is an indication that there is a good frequency
band set to insert the watermark image into the
corresponding 8x8 blocks.

A. Test and results

The tests were executed in one server which
features are shown in table 1. The operating
system used in the server is 64 bits (x86_64)
Ubuntu 10.10 running a 2.6.35-30-generic
Linux kernel. The server uses a 4.0 CUDA
driver version, 3.2 CUDA runtime version, and
a 1.3 CUDA capability version. For the GPU
implementations, the NVCC compiler of the
CUDA development toolkit has been used.

The CUDA host code was compiled by NVCC
using the system’s GCC version 4.4.2.

1) Input data

In order to test the implementations, the
grey scale 512x512 of “Barbara” test image
shown in figure 6 is used as cover image to
embed the watermark logo shown in figure 7.

 Table 1 Servers’ features.

Server name CPU GPU

Geogpus 8 Intel Xeon E5677 with:
•	 4 cores, 3.47GHz
•	 12 GB RAM

1 Tesla C1060 with:
•	 240 cores, 1.3 GHz
•	 4 GB RAM

Figure 4. Original image (Barbara).

Table 2 shows the outcomes of executing
sequential and CUDA implementations using
Barbara image. The first tables show the
results of executing five experiments, and
taking the runtime for each function involved
in the insertion and extraction algorithm.

These experiments were executed with the
aim of comparing the runtimes between the
implementation in C++ and the one in CUDA
C, based on the idea that the operations
executed in the GPU must be faster than the
ones computed in the CPU.

The results obtained from the GPUs in both
servers are faster than the ones collected
from the CPU. At this point, the results seem
to fit in the idea that the GPU is faster than the
CPU. It should be noted that the functions are
not considering the load and download of the
data to and from the GPU.

Figure 5. Watermark image
(© 2012 BancTec, Inc., All rights reserved)

 INGENIO MAGNO - 13

Table 2 Runtime for functions involved in the insertion/extraction algorithm (using Barbara image).

GEOGPUS (sequential)

DCT (ms) RATIO (ms) POLARITIES (ms) IDCT(ms) INSERTION (ms) EXTRACTION (ms)

1 0.18646 0.00388 0.00032997 0.018899 0.001003 0.000041962

2 0.18629 0.003881 0.00033188 0.01913 0.0010269 0.000041008

3 0.18733 0.0038848 0.00033116 0.018871 0.0010052 0.000041008

4 0.18609 0.003866 0.00032997 0.018895 0.001003 0.0000422

5 0.1882 0.00385 0.00032997 0.018888 0.0010071 0.000040054

0.18687400 0.00387236 0.00033059 0.01893660 0.00100904 0.00004125

GEOGPUS (CUDA)

DCT (ms) RATIO (ms) POLARITIES (ms) IDCT (ms) INSERTION (ms) EXTRACTION (ms)

1 0.0002141 0.0019349 0.000000051212 0.000051975 0.00014806 0.000082493

2 0.00021601 0.001907 0.000000050902 0.000051975 0.00010586 0.000085115

3 0.00021505 0.0016931 0.000000050592 0.000051022 0.0001049 0.000081062

4 0.00021482 0.001937 0.000000049901 0.000051022 0.00014687 0.000082803

5 0.00021505 0.0016671 0.000000049806 0.00005175 0.00010395 0.000082016

0.00021501 0.00182782 0.00000005 0.00005159 0.00012193 0.00008270

Complexity reduction (sequential / CUDA)

869.16 2.12 6,548.59 367.03 8.28 0.50

The line in black shows the acceleration of GPU implementation compared to CPU for different
processes involved in the watermark embedding/extraction.

Table 3 Runtime of the insertion and the MSE, and the extraction and the NC operations (using
Barbara image).

GEOGPUS (sequential)

INSERTION OP. MSE EXTRACTION OP. NC

1 0.23152 0.002527 0.22152 0.0061359

2 0.22963 0.0025148 0.22486 0.0055099

3 0.23099 0.0025282 0.22162 0.0056429

4 0.22983 0.0025229 0.22303 0.0060408

5 0.22824 0.002522 0.22373 0.0061831

0.23004200 0.00252298 0.22295200 0.00590254

GEOGPUS (CUDA)

INSERTION OP. MSE Total MSE EXTRACTION OP. NC Total NC

1 0.019511 0.012955 0.0000088215 0.038799 0.00579 0.0000081062

2 0.019452 0.012958 0.0000097752 0.037034 0.0064609 0.0000078678

3 0.019466 0.014669 0.0000088215 0.038534 0.0058 0.0000078678

4 0.019507 0.012967 0.000010014 0.037186 0.005774 0.0000081062

5 0.019937 0.013699 0.000010967 0.037502 0.0058062 0.0000081062

0.01957460 0.01344960 0.00000968 0.03781100 0.00592622 0.00000801

Complexity reduction (sequential / CUDA)

11.75 0.19 609.77 5.90 1.00 736.82

14 - INGENIO MAGNO

Table 3 shows the runtime of the complete
procedure to insert and extract a watermark
involved in Shieh algorithm. In these experiments
the upload and download of the data are
considered. GPU does not seem much superior
considering the results of the last tables. The MSE
and the NC functions (see MSE and NC in the
table) executed on the GPU without considering
the data transfer seems to be fast, but considering
the data transfer are more expensive than the
ones executed in the CPU (see MSE Total and NC
Total in the table).

The line in black shows the time spent to compute
the complete watermarking process. The times
are lower than the ones in table 2, due to the fact
that the upload and download of data on the GPU
are considered. The implementation with CUDA
maintains the dominance in the minor runtime in
respect to the C++ implementation, except for the
MSE operation that spends more time in the GPU.

Table 4 Represents the average of the time in tables 2 and
3, and the acceleration in the process. The row A exempli-
fies the difference in runtime of the operations when the
transfer of data to and from the GPU is not taking in ac-
count. Row B shows the same runtime operation but con-
sidering the data transfer.

CPU (ms) GPU (ms) Acceleration
(times)

A 0.21106384 0.00229910 91.80

B 0.46141950 0.07676142 6.01

Table 4 shows the acceleration, that in the case
of the results in table 2, the GPU is 91.80 times
faster than the CPU, but taking into account the
upload and download of the data on the GPU, the
process is just 6.01 times faster in the GPU than
in the CPU. The measured accuracy for fitness
evaluation is evaluated to be 5% due to changes
of numerical representation between GPU and
CPU implementation.

This paper is not focused on how to improve or
optimize the watermarking algorithm, but in to
accelerating the process. In order to calculate the
accuracy of the GPU implementation compared
to CPU results, there were generated the random
bands where the watermark was going to be
inserted. These sequences of bands were used
to test the GPU and CPU code implementations.

V. Conclusion

With the vast volume of information flowing on
the Internet, watermarking is widely used to
protect this information authenticity. The need for
copyright a huge quantity of digital files, spending
the less possible amount of time and avoiding the
loss information were the reasons to propose the
use of an accelerated version of the watermarking
algorithm proposed by Shieh et al. (2004), using
CUDA architecture.

The use of a GPU for accelerating the operations
involved in the algorithms of insertion and
extraction of the watermarking algorithm was
a challenge, since it is a parallelism paradigm.
There is not a standard configuration for the
blocks, threads or the memory treatment in the
GPU. That is why the analysis and design of the
procedures are a requirement needed to take
full advantage of the parallelism. In order to use
parallel programming in a GPU, it is necessary to
shift from a sequential to a parallel thinking, strictly
learning how to divide a huge problem into small
ones —divide and conquer— attempting to obtain
the best performance.

As shown in the experiments, the runtime of
the functions are fastest in the GPU without
considering the data transfer. Considering it,
sometimes the function spends more time than
the sequential execution. In the case of the Shieh
algorithm, the required equations to be parallelized
were analyzed to get the best performance on
the GPU. For the calculation of the MSE and NC
there was not an improvement of the performance
compared with the sequential version. The
execution of the functions is fast, but the transfer
of the data to the GPU and back slows down the
performance. For this reason it is necessary to
seek for another solution for the transaction of the
data.

On the other hand, the use of optimization
techniques such as Genetic Algorithms, Bioinspired
Algorithms, etc. is widely recommended in order
to improve the outcomes. These algorithms based
on population have the ease to be parallelizable
and, combined with the embedding and extracting
algorithm would provide a robust application to
verify the authenticity of digital image files (García-
Cano, 2012).

 INGENIO MAGNO - 15

REFERENCIAS

1.	 AlpVision. (2012). Digital watermarking. Retrieved
from http://www.alpvision.com/watermarking.
html

2.	 Brunton, A., & Zhao , J. (2006). Real-time video
watermarking on programmable graphics hard-
ware. Information Engineering and Computer Sci-
ence (ICIECS), 1312 - 1315 .

3.	 Farber, R. (2011). CUDA Application Design and
Development (1st ed.). USA: Morgan Kaufmann.

4.	 García-Cano, E. (2012). A parallel bioinspired
watermarking algorithm on a GPU. Posgrado en
Ciencias e Ingeniería de la Computación, UNAM.

5.	 Mohanty, S., Pati, N., & Kougianos, l. (2007). A
Watermarking Co-Processor for New Generation
Graphics Processing Units. International Confer-
ence on Consumer Electronics, 2007 .

6.	 National Instruments . (2012). Peak Signal-to-
Noise Ratio as an Image Quality Metric. Retrieved
from http://www.ni.com/white-paper/13306/en

7.	 NVIDIA. (2010). CUDA Toolkit 4.2 CURAND
Guide. (N. Corporation, Ed.)

8.	 NVIDIA. (2012). NVIDIA CUDA C Programming
Guide, version 4.2. (N. Corporation, Ed.)

9.	 Obukhov, A., & Kharlamov, A. (2008). Discrete
Cosine Transform 8x8 Blocks with CUDA. USA:
NVIDIA Corporation.

10.	 Ramesh, S., Shanmugam, A., & Gomathy, B.
(2011, February). Comparison and Analysis of
Self-Reference Image with Meaningful Image for
Robust Watermarking Algorithm based on Visual
Quality and Fidelity. International Journal of Com-
puter Applications, 15(5).

11.	 Sanders, J., & Kandrot, E. (2010). CUDA by ex-
ample: An Introduction for General Purpose GPU
Programming.

12.	 Shieh, C.-S., Huang, H.-C., Wang, F.-H., & Pan,
J.-S. (2004, March). Genetic watermarking based
on transform-domain techniques. Pattern Recog-
nition, 37(3).

13.	 Vihari, P., & Mishra, M. (2012). Image Authentica-
tion Algorithm on GPU. 2012 International Con-
ference on Communication Systems and Network
, 874 - 878 .

14.	 Zhao , L., & Yang, J. (2011, March). A High Per-
formance Image Authentication Algorithm on GPU
with CUDA. (M. E. Press, Ed.) I. J. Intelligent Sys-
tems and Applications, 2, 52-59.

VI. Acknowledgements

The first author, student at the Posgrado en Ciencia e Ingeniería de la Computación of the
Universidad Nacional Autónoma de México, wants to express his gratitude to the support
received from CONACYT (scholarship number 37617) and PAPIIT (project number IN400312).
This work is also supported by BancTech Inc.

