Directivos

P. Jorge Ferdinando RODRÍGUEZ RUIZ, O.P.
Rector

P. José Antonio BALAGUERA CEPEDA, O.P.
Vicerrector Administrativo-Financiero

P. Javier Antonio CASTELLANOS, O.P.
Vicerrector Académico

P. Samuel Elias FORERO BUITRAGO, O.P.
Decano de División de Ingeniería y Arquitectura

Jimena BOHÓRQUEZ HERRERA, Ph.D.
Directora Unidad de Investigaciones

Édgar Andrés GUTIÉRREZ CÁCERES, Esp.
Director Centro de Investigaciones en Ingeniería
San Alberto Magno - (CIIAM)

Editor

Fredy Andrés Aponte Novoa, M.Sc.
Centro de Investigación en Ingeniería Alberto Magno (CIIAM)
ingeniomagno@ustunja.edu.co
Equipo Editorial

Edwin Blasnilo Rúa Ramírez, M.Sc.
Coeditor Universidad Santo Tomás, Tunja, Colombia
edwin.rua@usantoto.edu.co

José Ricardo Casallas Gutiérrez, M.Sc.
Coeditor Universidad Santo Tomás, Tunja, Colombia
jose.casallas@usantoto.edu.co

John Fredy Guzmán Vargas
Profesional en Filosofía y Letras
Corrector de estilo, redactor
fredyguzmanvargas@gmail.com

Albany Milena Lozano Násner, M.Sc.
Traducción español-portugués
mlnasner@gmail.com

Departamento de Idiomas
Traducción español-inglés
Universidad Santo Tomás, Tunja, Colombia
coordinacionidiomas@ustatunja.edu.co

David Enrique González Camargo
Administrador OJS
Universidad Santo Tomás, Tunja, Colombia
ing.investigacion@ustatunja.edu.co

Comité Científico

Antonio Moreira Teixeira, Ph.D.
Universidade de Aberta (Lisboa, Portugal)
antonio.teixeira@uab.pt

ELECTRO Eduardo Silva Lora, Ph.D.
Universidad Federal de Itajubá (Itajubá M.G., Brasil)
electro@unifei.edu.br

María Julia Mazzarino, Ph.D.
Universidad de Buenos Aires (Buenos Aires, Argentina)
mazzari@crub.uncoma.edu.ar

Antonio Rico Sulayes, Ph.D.
Universidad de las Américas Puebla (Puebla, México)
antonio.rico@udlap.mx

Carlos Enrique Montenegro Marín, Ph.D.
Universidad Distrital Francisco José de Caldas (Bogotá D.C., Colombia)
cemontenegro@udistrital.edu.co

César Darío Guerrero Santander, Ph.D.
Universidad Autónoma de Bucaramanga (Bucaramanga - Santander, Colombia)
cguerrer@unab.edu.co

Comité Editorial de la Revista

Antonio José Bula Silvera, Ph.D.
Universidad Católica del Norte (Barranquilla - Atlántico, Colombia)
abula@uninorte.edu.co

Wilson Javier Pérez Holguín, Ph.D.
Universidad Pedagógica y Tecnológica de Colombia (Tunja - Boyacá, Colombia)
wilson.perez@uptc.edu.co

José Carlos Escobar Palacios, Ph.D.
Investigador Universidad Federal de Itajubá (Itajubá M.G., Brasil)
jocescobar@unifei.edu.br

Camilo Andrés Lesmes Fabian, Ph.D.
Universidad Santo Tomás (Tunja - Boyacá, Colombia)
camilo.lesmes@usantoto.edu.co

Impresión

Editorial Jotamar Ltda.
Calle 57 No. 3-39
Tel.: (8) 745 7120
editorialjotamar@yahoo.com
Tunja - Boyacá - Colombia
Caracterización de un material compuesto de Tetra Pak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor

Characterization of a Tetra Pak composite material, reinforced with low density polyethylene (LDPE) and formed in a heat press

Caracterização de um material Tetra Pak, reforçado com polietileno de baixa densidade (LDPE) e formado em uma prensa de calor

Juan Rodrigo Salamanca-Sarmiento
Universidad Santo Tomás, Seccional Tunja
juan.salamanca@usantoto.edu.co

Juan Sebastián Vaca-Rodríguez
Universidad Santo Tomás, Seccional Tunja, Ingeniería Mecánica
juan.vaca@usantoto.edu.co
Resumen

Este artículo presenta la evaluación de propiedades de un material compuesto obtenido mediante un proceso de selección, limpieza, triturado y prensado con calor. Los materiales seleccionados son Tetra Pak y polietileno de baja densidad (PEBD) reciclados. Teniendo en cuenta que el contenido de polímero del Tetra Pak llega solo al 6%, se adiciona el PEBD para aumentar el trabajo de unión del material triturado; la composición del material queda de 90% Tetra Pak y 10% de PEBD. La obtención del material compuesto por caracterizar se desarrolla eliminando el uso de agua, al igual que disminuyendo tiempos y áreas requeridos para el manejo y la fabricación. Las tres mezclas por evaluar se manejaron con la misma composición y se hicieron con PEBD triturado, variando el tamaño del Tetra Pak así: a) láminas de Tetra Pak; b) franjas de Tetra Pak de 20 × 30 × 1 cm; c) Tetra Pak triturado de 5 × 5 mm. Mediante ensayos de tracción, flexión y microscopía óptica, se confirmaron las propiedades mecánicas de los paneles obtenidos, para ser empleados en la industria de la construcción y en el mobiliario para la industria y el hogar.

Palabras clave: polietileno de baja densidad, Tetra Pak, propiedades mecánicas, higroscópico.

Abstract

This paper presents the evaluation of properties of a composite material obtained through a selection, cleaning, crushing and heat pressing process. The selected materials are Tetra Pak and recycled low density polyethylene (LDPE). Taking into account that the polymer content of the Tetra Pak reaches only 6%, the LDPE is added to increase the bonding work of the crushed material; the composition of the material is 90% Tetra Pak and 10% LDPE. Obtaining the composite material for characterization is developed by eliminating the use of water, as well as reducing times and areas required for handling and manufacturing. The three mixtures to be evaluated were handled with the same composition and made with crushed LDPE, varying the size of the Tetra Pak as follows: (a) Tetra Pak sheets; (b) Tetra Pak strips of 20 × 30 × 1 cm; (c) Tetra Pak crushed 5 × 5 mm. The mechanical properties of the panels obtained were confirmed through traction, flexion and optical microscopy tests, in order to be used in the construction industry and in industrial and home furniture.

Keywords: low density polyethylene, Tetra Pak, mechanical properties, hygroscopic.

Resumo

Este artigo apresenta a avaliação das propriedades de um material obtido através de um processo de seleção, limpeza, esmagamento e prensagem por calor. Os materiais selecionados são Tetra Pak e polietileno de baixa densidade reciclado (LDPE). Tendo em conta que o conteúdo de polímero do Tetra Pak atinge apenas 6%, o LDPE foi adicionado para aumentar o trabalho de ligação do material triturado; a composição do material definitivo foi de 90% de Tetra Pak e 10% de LDPE. A obtenção do material composto para caracterização foi desenvolvida eliminando o uso de água, além de reduzir os tempos e as áreas necessárias para o manuseio e a fabricação.
As três misturas avaliadas foram manipuladas com a mesma composição e feitas com LDPE esmagado, variando o tamanho do Tetra Pak da seguinte forma: (a) Folhas de Tetra Pak; (b) Tiras de Tetra Pak de $20 \times 30 \times 1$ cm; (c) Tetra Pak esmagado $5 \times 5$ mm. Através de ensaios de tração, de flexão e de microscopia óptica, as propriedades mecânicas dos painéis obtidos foram confirmadas para uso na indústria da construção e móveis para a indústria e o lar.

**Palavras chave:** polietileno de baixa densidade, Tetra Pak, propriedades mecânicas, propriedades higroscópicas.

---

### I. Introducción

En el ámbito mundial se promueve el reciclaje. Instituciones públicas y privadas vienen trabajando de manera conjunta en la sensibilización de la población para la reducción de residuos sólidos, para lo cual brindan asistencia técnica y capacitación con miras a promover y difundir el reciclaje (Reyes, 2007). De esta forma, se busca obtener materiales compuestos, que son una alternativa de uso para elementos de desecho. Se denomina *material compuesto* a un material combinado obtenido a partir de la unión (no química) de dos o más componentes, lo cual da lugar a propiedades o características específicas (Espitia, 2010).

Así, se logran combinaciones novedosas, no siempre funcionales. Los materiales compuestos están formados generalmente por dos fases: una continua, que se llama *matriz*, y otra fase dispersa, integrada por partículas o por fibras (cortas o largas) (Espitia, 2010). Además, los materiales compuestos (MC) de polietileno, aluminio y aserrín mejoran su propiedades con la adición de compuesto de polvo de arena y harina de arroz (Adir, Alperen, Akbulut y Mertoglu, 2013). Por esta razón, es importante el estudio de la calidad en la interfaz del compuesto, en función de garantizar una buena interacción entre las fibras y la matriz, con el fin de aprovechar al máximo el carácter reforzante de la fase dispersa en el material compuesto (Hidalgo y Muñoz, 2010). Asimismo, se logran mejoras con la adición de caolín calcinado, que potencia propiedades del material compuesto, tales como resistencia, disminución de absorción de agua y, en términos generales, mejoramiento del comportamiento (Amit, Anil y Barik, 2015).

Si la interfase es débil, la transferencia de carga de la matriz al refuerzo no será eficiente, o bien, será la matriz la que termine soportando las cargas —y fallando, puesto que no es muy resistente—, o se producirán huecos entre la matriz y las fibras, lo cual llevará a la rotura del material compuesto (Martínez-López *et al.*, 2015).

El proceso de reciclaje de los embalajes asépticos —los cuales se componen de cartón, polietileno de baja densidad (PEBD) y aluminio (Al)— consiste en recuperar el cartón (papel), que es el mayor componente por mezcla líquida, dejando una mezcla de PEBD con Al. Este compósito es llamado PEAL, que ofrece una interesante combinación de propiedades (Hidalgo, 2011). Además, de acuerdo con los contenidos de los envases Tetra Pak, se pueden lograr facilitades en el tratamiento de reciclaje; por ejemplo, los ácidos acéticos...
y propiónico generan descomposición del Tetra Pak, mientras que el ácido cítrico y láctico no afectan estos empaques (Olafsson et al., 1993).

En diversas partes del mundo, con la finalidad de reducir la problemática de los residuos sólidos urbanos, los gobiernos locales y los empresarios han fomentado el uso del Tetra Pak. En concreto, mediante pirolisis, es posible obtener diversos productos para aprovechamiento posterior, a saber: fenoles acuosos, alquinitrán y ceras de polímero (Korkmaz et al., 2009). Así también, los desechos poliméricos de ciudad que normalmente son mezclas (PEBD, PEAD, PS, PP, PET, etc.), tratados con temperaturas controladas y un agente catalizador, pueden producir compuestos isómeros, hidrocarburos aromáticos, en proporciones que dependen de las condiciones de los procesos (Vasilie et al., 2001). Otra alternativa para el aprovechamiento de polímeros de desecho es mediante un proceso de conversión a baja temperatura, que permite obtener hidrocarburos ligeros (Domínguez y Guémez, 2010), así como el procesado para producir paneles (Pedroza, 2013).

La manera más común de fabricar es introducir los envases en agua y separar mediante la agitación mecánica los distintos materiales de su composición: cartón (75% del recipiente), polietileno (20%) y aluminio (5%). Con la celulosa obtenida se fabrica papel tipo kraft, del cual se hacen bolsas o cartones de huevo (Betcourt, 2009). Este material ha tenido gran acogida en países de Europa y América Latina, pues se considera como un material innovador, de alta calidad, resistencia y con características únicas (Guerrero et al., 2012).

El tectán, como nuevo material versátil de construcción, es una alternativa que se usa en diversos países del mundo. En Europa hay empresas dedicadas a la fabricación de diferentes objetos a partir de este material. Hoy en día existe una amplia gama de productos de tectán. En España, se le conoce como maplar, pero el proceso de fabricación no presenta variaciones (Hidalgo, 2013).

Las láminas de aglomerados son un producto ambientalmente amigable, a diferencia de los aglomerados de madera comunes. De igual manera, las láminas poseen unas características especiales producto de los materiales que las componen; estas las diferencian sustancialmente de los aglomerados de madera comunes (Kumar et al., 2015).

En otros procesos se emplean fibras celulósicas como refuerzo de compuestos de matrices poliméricas; sin embargo, la naturaleza hidrofílica de las fibras naturales y del cartón genera problemas de compatibilidad con matrices termoplásticas, ya que usualmente estas son de carácter hidrofóbico y, por ende, se afecta la calidad interfacial fibra-matriz (Vasilie et al., 2001). Los materiales compuestos de fibras de celulosa y termodrásicos presentan inconvenientes, como la poca miscibilidad entre las fases y la formación de aglomerados (Ayrilmis et al., 2013).

Una forma de reciclar es triturar el Tetra Pak y extender el granulado sobre una plancha, donde se calienta y se prensa. Esta operación hace que el polietileno se funda y se active como un adhesivo que aglutina a los tres componentes (Hussain et al., 2010). El resultado es una lámina compacta similar a las tablas de aglomerado de madera. Este trabajo presenta un proceso alternativo para el reciclaje de Tetra Pak por vía seca y que permita una producción más rápida y económica.

En el presente artículo se logró obtener un material compuesto, de buenas propiedades mecánicas, con la eliminación del proceso tradicional de transformación con uso de agua.
II. Métodos y materiales

A. Materiales

Para la fabricación de los elementos del material compuesto (Tetra Pak-PEBD), se hizo acopio durante dos meses en varias zonas de Tunja, Boyacá, y luego se realizó la trituración del material. La conformación del material se hizo en una prensa de calor diseñada para este propósito, con el fin de evaluar la variación en la resistencia a la tracción y a la flexión de las muestras trabajadas.

El PEBD reciclado que se empleó consiste en un material de dimensiones parecidas al triturado de Tetra Pak, es decir, 5 mm × 5 mm, pero este debió ser adquirido en Bogotá y suministrado por Colorplastic S.A.S.

B. Fabricación de paneles

Los materiales empleados fueron empaques de Tetra Pak, preparados en tres presentaciones: a) lámina de Tetra Pak desplegada (figura 1); tiras o franjas de Tetra Pak (figura 2) de dimensiones aproximadas de 1×25 cm; c) triturado de Tetra Pak, de dimensiones 5×5 mm (figura 3).

Los materiales se cargaron en la prensa de calor, diseñada para el propósito y previamente llevada a 180 °C; luego se sometieron a una presión constante de 5 MPa.

Para el estudio se fabricaron seis probetas por cada mezcla de material. La caracterización se hizo con mezclas de Tetra Pak reforzadas con adición de 10% de material PEBD (figura 4).

Las probetas se obtuvieron de los paneles (8 a 10) que se fabricaron de cada mezcla (figura 5). La selección se hizo con el (33%), para la construcción de las probetas mecanizadas, y de cada panel se obtuvieron ocho probetas (tracción) y seis probetas (flexión).

También se hicieron pruebas con material de Tetra Pak al 100% prensado y con adición de calor, con el objetivo de hacer comparación directa de los resultados; sin embargo, la cantidad de polietileno que contiene el Tetra Pak (6%, aproximadamente) no es suficiente para generar una cohesión importante en la construcción de piezas consistentes.

Como parte del desarrollo de este trabajo, se construyó un prototipo de prensa de calor, que calienta y compacta el material. Las probetas se fabricaron de acuerdo con ASTM D638-10.
(tracción) y ASTM-D790-03 (flexión), con seis muestras cada mezcla (33% de cada muestra).

El estudio de microscopía óptica se realizó con un microscopio metalográfico tricocular, plano acromático, modelo 178/2, con el fin de revisar las intersecciones del material de Tetra Pak, en cuanto a su conformación o separación de capas.

La prensa de calor consta de un juego de bandejas de aluminio, de 12 mm de espesor y dimensiones de 0,4 m x 0,6 m; estas alojan un set de tres resistencias cada una, con control de temperatura y presión en cada bandeja.

C. MÉTODOS DE ENSAJO

Determinación de propiedades mediante los ensayos:

- Tracción de las probetas de material compuesto de diferentes presentaciones de Tetra Pak.

- Flexión de las probetas de material compuesto de diferentes presentaciones de Tetra Pak.

- Estudio mediante microscopía óptica de las zonas de cohesión de las capas del material.

1. ENSAJOS DE TRACCIÓN DEL MATERIAL COMPOSTO

Estos ensayos se efectuaron en una máquina universal de tracción, marca Microtest EM2/300/FR, siguiendo las recomendaciones de ASTM D638-10.

Los resultados presentados se dan con valores promedio de la resistencia máxima a tracción de todas las seis probetas ensayadas por cada mezcla.

2. ENSAJO DE FLEXIÓN DEL MATERIAL COMPOSTO

Este ensayo fue realizado según ASTM-D790-03. Se tomaron seis probetas de cada mezcla como réplicas del ensayo (figuras 9, 10 y 11). Con los datos obtenidos se calcularon los valores promedios de resistencia a la flexión o el doblez de cada mezcla propuesta de material compuesto Tetra Pak-PEBD.
3. Microscopía óptica (MO)

Se hizo análisis de las zonas de rotura o separación de los materiales constituyentes, revisando principalmente las zonas de adhesión de cartón-polímero de las probetas destinadas a esta prueba.

III. Resultados

A. Ensayo de tracción

Realizado a las tres clases de probetas fabricadas, láminas, tiras y triturado de Tetra Pak.

**Tabla 1.** Datos generales de los ensayos de tracción

<table>
<thead>
<tr>
<th>N.º probeta.</th>
<th>Máquina</th>
<th>Fecha</th>
<th>Nombre del ensayo</th>
<th>Forma de probeta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18 MICROTEST EM2/300/FR</td>
<td>14/12/2015</td>
<td>Ensayo de tracción</td>
<td>Rectangular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ancho</th>
<th>Espesor</th>
<th>Área</th>
<th>Velocidad de ensayo</th>
<th>Longitud de base</th>
<th>Offset límite elástico</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm²</td>
<td>N/s</td>
<td>mm</td>
<td>%</td>
</tr>
<tr>
<td>13,000</td>
<td>7,000</td>
<td>91,000</td>
<td>200,000</td>
<td>50,000</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Fuente: Resultado de ensayos del INCITEMA.

En este ensayo, debido a la geometría de la probeta, se generan zonas de debilidad estructural, por cuanto el cartón del Tetra Pak se desprende del plástico, dando valores de resistencia a la tracción menores con respecto a valores de probetas de polímero.

El comportamiento del panel conformado de material triturado (figuras 12 y 13) fue el de mejor desempeño. Además, la distribución del PEBD es más homogénea en todo el panel, pues presenta una buena resistencia a cargas y pesos soportados, así como la mejor presentación como panel.

El panel de material compuesto de franjas (figuras 14 y 15) presentó mayores problemas en cuanto a la conformación, desde el momento de cargarlo en la prensa de calor, hasta el momento de desmoldeo, debido a que las franjas son de difícil manejo y se debe buscar una carga homogénea en densidad y espesor del panel conformado.

Las probetas de este material presentaron los valores más altos de resistencia a la tracción, haciéndolo muy cercano a valores de plásticos de uso común; además, los paneles presentan buen aspecto.
Las probetas fabricadas con láminas (figuras 16 y 17) de Tetra Pak presentan un adecuado desempeño debido a los valores de resistencia a la tracción; esto es generado por la resistencia de las láminas enteras de Tetra Pak.

A mayor compactación se obtiene mayor valor de resistencias mecánicas para este material, debido a que la resistencia en general corresponde casi toda a la resistencia del cartón. Como desventaja de este material se debe anotar que un doblez puede producir la separación de las capas, debido a que el contenido de plástico del Tetra Pak (cerca al 6% en peso del material) no alcanza a ejercer una cohesión confiable.

En la tabla 2 se puede ver la diferencia de resistencias a la tracción, con datos máximos sombreados. En la figura 18 se puede notar la variación dada por los constituyentes del material en la mezcla, lámina (amarillo y gris), franjas (verde y azul oscuro) y triturado (naranja y azul claro).
Tabla 2. Datos de ensayos de tracción

<table>
<thead>
<tr>
<th>Deformación (cm)</th>
<th>Triturado 1 (kN)</th>
<th>Triturado 2 (kN)</th>
<th>Láminas 1 (kN)</th>
<th>Láminas 2 (kN)</th>
<th>Franjas 1 (kN)</th>
<th>Franjas 2 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>0,14</td>
<td>0,26</td>
<td>0,38</td>
<td>0,4</td>
<td>0,15</td>
<td>0,01</td>
</tr>
<tr>
<td>1</td>
<td>0,3</td>
<td>0,33</td>
<td>0,74</td>
<td>0,5</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>1,5</td>
<td>0,48</td>
<td>0,458</td>
<td>0,98</td>
<td>0,8</td>
<td>0,55</td>
<td>0,69</td>
</tr>
<tr>
<td>2</td>
<td>0,526</td>
<td>0,034</td>
<td>1,27</td>
<td>0,95</td>
<td>0,83</td>
<td>0,88</td>
</tr>
<tr>
<td>2,5</td>
<td>0,29</td>
<td>0,021</td>
<td>1,42</td>
<td>1,2</td>
<td>0,91</td>
<td>1,03</td>
</tr>
<tr>
<td>3</td>
<td>0,15</td>
<td>0,01</td>
<td>1,68</td>
<td>1,35</td>
<td>1,15</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>0,1</td>
<td>0,004</td>
<td>1,75</td>
<td>1,52</td>
<td>1,08</td>
<td>1,2</td>
</tr>
<tr>
<td>4</td>
<td>0,004</td>
<td>-</td>
<td>1,02</td>
<td>1,72</td>
<td>1,1</td>
<td>1,25</td>
</tr>
<tr>
<td>4,5</td>
<td>0,002</td>
<td>-</td>
<td>-</td>
<td>1,6</td>
<td>0,96</td>
<td>0,92</td>
</tr>
<tr>
<td>5</td>
<td>0,001</td>
<td>-</td>
<td>-</td>
<td>1,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5,5</td>
<td>0,002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0,001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: resultado de ensayos del INCITEMA.

Los valores de tracción obtenidos presentan mejor resistencia de las probetas constituidas por láminas de Tetra Pak más LDPE; luego, las probetas constituidas por franjas; por último, las probetas de triturado. Los paneles mejor conformados y más resistentes son los constituidos por triturado; luego, los de franjas; por último, los de láminas. Este dato comprueba que el material compuesto Tetra Pak-LDPE presenta la resistencia necesaria para ser una alternativa en la producción de mobiliario básico, fabricado con materias primas nuevas.

Tabla 3. Cálculo módulo de Young, material Tetra Pak-LDPE

<table>
<thead>
<tr>
<th>Muestra</th>
<th>P(Kn)</th>
<th>A(m²)</th>
<th>$\varepsilon_{i}$</th>
<th>$\delta$ (Pa)</th>
<th>E(kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triturado 1</td>
<td>0,526</td>
<td>0,0002</td>
<td>0,15</td>
<td>2630</td>
<td>17533,3333</td>
</tr>
<tr>
<td>Triturado 2</td>
<td>0,458</td>
<td>0,0002</td>
<td>0,09</td>
<td>2290</td>
<td>25444,4444</td>
</tr>
<tr>
<td>Franjas 1</td>
<td>1,102</td>
<td>0,0002</td>
<td>0,242</td>
<td>5510</td>
<td>22768,595</td>
</tr>
<tr>
<td>Franjas 2</td>
<td>1,249</td>
<td>0,0002</td>
<td>0,242</td>
<td>6245</td>
<td>25805,7851</td>
</tr>
<tr>
<td>Lámina 1</td>
<td>1,75</td>
<td>0,0002</td>
<td>0,212</td>
<td>8750</td>
<td>41273,5849</td>
</tr>
<tr>
<td>Lámina 2</td>
<td>1,72</td>
<td>0,0002</td>
<td>0,242</td>
<td>8600</td>
<td>35537,1901</td>
</tr>
</tbody>
</table>

$E = \frac{\delta}{\varepsilon}$ ; $\delta = \frac{P}{A}$
Caracterización de un material compuesto de Tetra Pak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor

En la tabla 3 se muestra el cálculo del módulo de Young para cada material, de acuerdo con los promedios de los ensayos de tracción. En cualquiera de las composiciones de los paneles, el material compuesto Tetra Pak-LDPE cumple con los requerimientos mínimos de resistencia y durabilidad.

**Figura 19.** Comparativa de tracción de las muestras

El material compuesto por Tetra Pak triturado (figuras 19 y 20) presentó bajas resistencias en algunas probetas, lo que disminuyó el promedio en los resultados del ensayo de flexión, debido principalmente a la geometría de la probeta, por las reducidas dimensiones. A pesar de esto, el panel de este material presentó el mejor comportamiento en resistencia, autonomía y presentación, y superficie terminada.

Las probetas de material compuesto a base de franjas de Tetra Pak (figuras 21 y 22) presentaron un comportamiento mejorado con respecto a las probetas de material compuesto triturado. Lo anterior se debe a la variación en la homogeneidad del material con respecto a la distribución del LDPE y las franjas de Tetra Pak.

Al igual que en los ensayos de tracción, en las pruebas de flexión el material compuesto construido en forma de láminas de Tetra Pak (figuras 23 y 24) dio los mejores resultados de resistencia y autonomía, cuando es usado de forma rígida.

**B. Ensayo de flexión**

Se realizaron seis réplicas a cada una de las mezclas, láminas, tiras y triturado de Tetra Pak, con el fin de obtener la resistencia a los esfuerzos transversales del material compuesto.

**Tabla 4.** Datos de ensayo de flexión

<table>
<thead>
<tr>
<th>N.º de probetas</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maquina</td>
<td>Microtest EM2/300/FR</td>
</tr>
<tr>
<td>Nombre de ensayo</td>
<td>Probeta plana</td>
</tr>
<tr>
<td>Forma de probeta</td>
<td>Rectangular</td>
</tr>
<tr>
<td>Área</td>
<td>mm²</td>
</tr>
<tr>
<td>Diámetro base</td>
<td>mm</td>
</tr>
<tr>
<td>Diámetro punzón</td>
<td>mm</td>
</tr>
<tr>
<td>Velocidad ensayo</td>
<td>N/s</td>
</tr>
</tbody>
</table>
En la figura 25 se presentan las gráficas de promedios de los ensayos de flexión, a modo de comparación, reunidas en un mismo plano. Esta figura sirve para corroborar la similitud de las mezclas de materiales en su resistencia a la flexión.

**Figura 25. Comparativa de flexión de las muestras**

En la tabla 5 se presentan los datos promedios de los ensayos de flexión en las muestras estudiadas; se sombreado los valores máximos de cada grupo.

### Tabla 5. Datos de ensayos de flexión

<table>
<thead>
<tr>
<th>Deformación (cm)</th>
<th>Triturado 1 (kN)</th>
<th>Triturado 2 (kN)</th>
<th>Láminas 1 (kN)</th>
<th>Láminas 2 (kN)</th>
<th>Franjas 1 (kN)</th>
<th>Franjas 2 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,006</td>
<td>0,008</td>
<td>0,02</td>
<td>0,018</td>
<td>0,014</td>
<td>0,01</td>
</tr>
<tr>
<td>2</td>
<td>0,026</td>
<td>0,014</td>
<td>0,048</td>
<td>0,03</td>
<td>0,02</td>
<td>0,22</td>
</tr>
<tr>
<td>3</td>
<td>0,032</td>
<td>0,022</td>
<td>0,064</td>
<td>0,046</td>
<td>0,029</td>
<td>0,3</td>
</tr>
<tr>
<td>4</td>
<td>0,044</td>
<td>0,029</td>
<td>0,082</td>
<td>0,058</td>
<td>0,038</td>
<td>0,04</td>
</tr>
<tr>
<td>5</td>
<td>0,046</td>
<td>0,035</td>
<td>0,094</td>
<td>0,066</td>
<td>0,043</td>
<td>0,04</td>
</tr>
<tr>
<td>6</td>
<td>0,05</td>
<td>0,038</td>
<td>0,08</td>
<td>0,068</td>
<td>0,035</td>
<td>0,04</td>
</tr>
<tr>
<td>7</td>
<td>0,055</td>
<td>0,036</td>
<td>0,082</td>
<td>0,066</td>
<td>0,026</td>
<td>0,05</td>
</tr>
<tr>
<td>8</td>
<td>0,06</td>
<td>0,036</td>
<td>0,078</td>
<td>0,068</td>
<td>0,024</td>
<td>0,05</td>
</tr>
<tr>
<td>9</td>
<td>0,062</td>
<td>0,04</td>
<td>0,07</td>
<td>0,072</td>
<td>0,023</td>
<td>0,05</td>
</tr>
<tr>
<td>10</td>
<td>0,064</td>
<td>0,038</td>
<td>0,055</td>
<td>0,077</td>
<td>-</td>
<td>0,05</td>
</tr>
<tr>
<td>11</td>
<td>0,063</td>
<td>0,036</td>
<td>-</td>
<td>0,042</td>
<td>-</td>
<td>0,05</td>
</tr>
<tr>
<td>12</td>
<td>0,058</td>
<td>0,038</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,04</td>
</tr>
<tr>
<td>13</td>
<td>0,054</td>
<td>0,035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>0,052</td>
<td>0,034</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>0,032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: resultado de ensayos del INCITEMA.

En la figura 25, de resistencia a la flexión, se pueden apreciar las gráficas que se distribuyen de forma parecida a los ensayos de tracción. En este caso, la mayor resistencia se logra con el material compuesto de láminas (gris, amarillo), seguido por el de franjas (azul claro) y, por último, las muestras de material triturado.

Para tener una referencia, se presentan los valores de resistencia a la flexión, calculados con los datos promediados de las pruebas de flexión ya analizadas.
**Tabla 6. Cálculo de la resistencia a la flexión del material Tetra Pak-LDPE**

<table>
<thead>
<tr>
<th>Muestra</th>
<th>( P ) (kN)</th>
<th>( l ) (m)</th>
<th>( b ) (m)</th>
<th>( h^2 ) (m²)</th>
<th>( \sigma ) (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triturado 1</td>
<td>0.064</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>14400</td>
</tr>
<tr>
<td>Triturado 2</td>
<td>0.04</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>9000</td>
</tr>
<tr>
<td>Franjas 1</td>
<td>0.043</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>9675</td>
</tr>
<tr>
<td>Franjas 2</td>
<td>0.052</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>11700</td>
</tr>
<tr>
<td>Lámina 1</td>
<td>0.082</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>18450</td>
</tr>
<tr>
<td>Lámina 2</td>
<td>0.077</td>
<td>0.3</td>
<td>0.02</td>
<td>0.0001</td>
<td>17325</td>
</tr>
</tbody>
</table>

La observación del material a través del microscopio requirió un análisis detallado, debido a que la primera observación a 100X no mostró detalles específicos en ninguna de las muestras. Por esto, las micrografías que se presentan fueron tomadas todas a 300X.

En la figura 26a se puede observar la zona clara (A), que corresponde al PEBD fundido recubriendo los trozos de Tetra Pak; el brillo se debe al resplandor del aluminio. En la zona B se observa la rugosidad propia de las láminas de cartón del Tetra Pak. Gracias a esa textura, es fácil que el polímero se adhiera al cartón.

En la figura 26b se observa la superficie del cartón, que se presenta por capas (C). Esto hace que el PEBD se extienda de forma homogénea, incluso rellenando los vacíos del material (D).

**Figura 26. Probeta de Tetra Pak-LDPE triturado a 300X**

En las figuras 27a y 27b se observan muestras del material compuesto de Tetra Pak-LDPE cortado en franjas. En ambas fotos se distingue polímero recubriendo una superficie.
amplia de Tetra Pak; sin embargo, ya la función conectora del polímero se disminuye, debido a que los trozos de cartón son más grandes, lo que ocasiona que se generen vacíos en el plástico, ocasionados por la mayor separación de material Tetra Pak y el elemento conductor es menor. Este hecho se hace notorio en la menor resistencia mecánica y en la superficie irregular.

Figura 28. Probetas de Tetra Pak-LDPE, láminas 300X

En la figura 28a y 28b se puede observar la acción del polímero, que se desliza por las láminas de Tetra Pak, cumpliendo una función de conector o adhesivo. Como se ve en la micrografía 28a, el polímero recubre la superficie rugosa del cartón, dejando ver los puntos más claros, que son las pocas láminas de aluminio que se asoman entre las láminas.

Lo mismo sucede en la micrografía 28b, en la que se puede observar el borde de una lámina de Tetra Pak bañado en polímero, recubriendo la superficie del cartón con algunas láminas de aluminio. Allí se puede observar el borde de las láminas que son unidas por el polímero, pero que, debido al bajo contenido del polímero, su constitución no es maciza en toda su extensión, sino solamente en las zonas en las que el polímero alcanza a cubrir el cartón.

IV. Discusión de Resultados

Los resultados presentados en la sección anterior acerca del material, de acuerdo con las respectivas variaciones, evidencia valores aceptables en cada uno de los ensayos realizados, lo que permite considerar estas mezclas como alternativa de uso en procesos de fabricación.

A. Resistencia a la tracción

A pesar de que el material que presenta mejores valores es el conformado por láminas completas de Tetra Pak, el más atractivo por manejo, moldeo y presentación es el material conformado con triturado de Tetra Pak y triturado de PEBD.

Se debe tener en cuenta que los valores de resistencia que presentan las tres muestras difieren de uno a otro en un valor alrededor al 15%. Todos tienen el inconveniente de no ser resistentes a la humedad, por cuanto su componente principal es el cartón, material que es higroscópico. Para estos materiales, una adición de 5% de PEBD mejorara de forma notoria la resistencia.

Los datos obtenidos en este trabajo permiten considerar al Tetra Pak reciclado como alternativa en la fabricación de mobiliario, con ven-
tajas de uso como bajo costo, materia prima, opción de negocio para nuevos productos.

B. Resistencia a la flexión

Los datos obtenidos del material compuesto son representativos. A pesar de que la construcción de las probetas reduce la resistencia de la lámina, el material se hace fuerte en bloques de considerables dimensiones.

C. Microscopía óptica

Previamente se indica que el contenido de polietileno en el Tetra Pak y el valor adicionado de PEBD en la mezcla hacen viable la unión de los compuestos cartón-polímero. Así, se puede observar una pieza en las micrografías, sin dejar ver interfaces, que determinen una posible debilidad estructural del material.

De esta forma, el polietileno genera un material más sólido y estable, gracias a que el cartón permite que el polímero líquido bañe la superficie irregular del cartón y se adhiera, formando una fase de mezcla de material compuesto.

Adicionalmente, el presente estudio involucra un proyecto económico, de fácil manejo y sencillo en el desarrollo, para la manufactura de paneles que se empleen en la construcción de mobiliario básico. Además, es un proyecto ecológico, por cuanto permite disminuir residuos plásticos y evitar el uso de agua en el proceso, lo que ahorra tiempo y recursos tanto físicos como económicos.

V. Conclusiones

- Los paneles construidos con el proceso en seco presentan propiedades mecánicas similares entre ellos, pero varía la presentación, según los componentes.
- La resistencia a la tracción y flexión de las probetas presenta una alternativa para usar de diversa forma el Tetra Pak, ya sea en láminas, franjas o triturado.
- Los paneles que dan mejor resistencia y presentación son los de Tetra Pak triturado y PEBD triturado, y es el escogido para la fabricación del mobiliario.
- Los paneles de material compuesto de láminas son complejos en el conformado y la homogenización de los componentes; no obstante, la fusión completa del PEBD triturado facilita la unión entre las láminas.
- Los paneles compuestos de franjas generan más uniformidad en cuanto a la distribución del polímero y presentación final.
- Para los ensayos mecánicos, la resistencia de las probetas se reduce a diferencia de los paneles, debido a que las dimensiones de las probetas son de tamaño similar al de las partículas inicialmente mezcladas, lo que produce zonas de ruptura por poco contacto de los componentes.
- El proceso de manufactura en seco para los paneles da al material final buenas propiedades de resistencia, consistencia y buena presentación.
- El material compuesto Tetra Pak-PEBD presenta facilidad de absorción de agua, por el contenido de cartón; esto hace que el material se deteriore al contacto con la humedad.
Referencias


monographs/index.php/monograficos/article/viewFile/247/146


